Skip to content

Commit

Permalink
zaddcom, shorten zmulcom
Browse files Browse the repository at this point in the history
  • Loading branch information
icecream17 committed Feb 2, 2025
1 parent cbdf352 commit 0f706de
Showing 1 changed file with 70 additions and 35 deletions.
105 changes: 70 additions & 35 deletions set.mm
Original file line number Diff line number Diff line change
Expand Up @@ -662578,6 +662578,54 @@ number axioms (add ~ ax-10 , ~ ax-11 , ~ ax-13 , ~ ax-nul , and remove
$( $j usage 'sn-nnne0' avoids 'ax-mulcom'; $)
$}

$( ~ elznn0nn restated using ~ df-resub . (Contributed by SN,
25-Jan-2025.) $)
reelznn0nn $p |-
( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ ( 0 -R N ) e. NN ) ) ) $=
( cz wcel cn0 cr cneg cn wa cc0 cresub elznn0nn cmin df-neg wceq resubeqsub
wo co 0re mpan eqtr4id eleq1d pm5.32i orbi2i bitri ) ABCADCZAECZAFZGCZHZPUE
UFIAJQZGCZHZPAKUIULUEUFUHUKUFUGUJGUFUGIALQZUJAMIECUFUJUMNRIAOSTUAUBUCUD $.

$( Addition is commutative for nonnegative integers. Proven without
~ ax-mulcom . (Contributed by SN, 1-Feb-2025.) $)
nn0addcom $p |- ( ( A e. NN0 /\ B e. NN0 ) -> ( A + B ) = ( B + A ) ) $=
( cn0 wcel cn cc0 wceq wo caddc co elnn0 readdid2 readdid1 eqtr4d syl oveq1
cr oveq2 eqeq12d syl5ibrcom nnaddcom nnre impcom jaoian sylanb nn0re jaodan
imp sylan2b ) BCDACDZBEDZBFGZHABIJZBAIJZGZBKUJUKUOULUJAEDZAFGZHUKUOAKUPUKUO
UQABUAUKUQUOUKUOUQFBIJZBFIJZGZUKBQDZUTBUBVAURBUSBLBMNOUQUMURUNUSAFBIPAFBIRS
TUCUDUEUJULUOUJUOULAFIJZFAIJZGZUJAQDZVDAUFVEVBAVCAMALNOULUMVBUNVCBFAIRBFAIP
STUHUGUI $.
$( $j usage 'nn0addcom' avoids 'ax-mulcom'; $)

$( Lemma for ~ zaddcom . (Contributed by SN, 1-Feb-2025.) $)
zaddcomlem $p |- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) ->
( A + B ) = ( B + A ) ) $=
( cr wcel cc0 cresub co cn wa cn0 caddc simpr nn0cnd ad2antrr recnd addassd
wceq syl oveq1d addcld rernegcl simpll renegid2 oveq2d nn0re adantl 3eqtrrd
readdid1 readdid2 sylan9eq nnnn0 nn0addcom sylan adantll 3eqtr4d sn-addcand
adantr 3eqtr3d mpbid ) ACDZEAFGZHDZIZBJDZIZVAABKGZKGZVABAKGZKGZQVFVHQVEVAAK
GZBKGZVABKGZAKGZVGVIVEBBVAKGZAKGZVKVMVEVOBVJKGBEKGZBVEBVAAVEBVCVDLMZVEVAUTV
ACDVBVDAUANOZVEAUTVBVDUBOZPVEVJEBKUTVJEQVBVDAUCZNUDVDVPBQZVCVDBCDZWABUEZBUH
RUFUGVCVDVKEBKGZBUTVKWDQVBUTVJEBKVTSUQVDWBWDBQWCBUIRUJVEVLVNAKVBVDVLVNQZUTV
BVAJDVDWEVAUKVABULUMUNSUOVEVAABVRVSVQPVEVABAVRVQVSPURVEVAVFVHVRVEABVSVQTVEB
AVQVSTUPUS $.

$( Addition is commutative for integers. Proven without ~ ax-mulcom .
(Contributed by SN, 25-Jan-2025.) $)
zaddcom $p |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A + B ) = ( B + A ) ) $=
( cz wcel cn0 cr cresub co cn wa wo caddc wceq reelznn0nn zaddcomlem oveq1d
cc0 nncnd addassd 3eqtr4d nn0addcom eqcomd renegid2 ad2antrl ad2antrr recnd
ancoms simplr simpll simprl readdid2 oveq2d simprr addcld nnaddcom ad2ant2l
3eqtr3d nnaddcld sn-addcand mpbid ccase syl2anb ) ACDAEDZAFDZQAGHZIDZJZKBED
ZBFDZQBGHZIDZJZKABLHZBALHZMZBCDANBNVCVHVGVLVOABUAABOVLVCVOVLVCJVNVMBAOUBUGV
GVLJZVEVJLHZVMLHZVQVNLHZMVOVPVJVELHZVMLHZVEVJVNLHZLHZVRVSVPVJVEVMLHZLHZVEAL
HZWAWCVPVJBLHZQWEWFVIWGQMVGVKBUCUDZVPWDBVJLVPWFBLHQBLHZWDBVPWFQBLVDWFQMVFVL
AUCUEZPVPVEABVPVEVDVFVLUHZRZVPAVDVFVLUIUFZVPBVGVIVKUJUFZSVIWIBMVGVKBUKUDUQU
LWJTVPVJVEVMVPVJVGVIVKUMZRZWLVPABWMWNUNZSVPWBAVELVPWGALHQALHZWBAVPWGQALWHPV
PVJBAWPWNWMSVDWRAMVFVLAUKUEUQULTVPVQVTVMLVFVKVQVTMVDVIVEVJUOUPPVPVEVJVNWLWP
VPBAWNWMUNZSTVPVQVMVNVPVQVPVEVJWKWOURRWQWSUSUTVAVB $.
$( $j usage 'zaddcom' avoids 'ax-mulcom'; $)

${
$d A x y $. $d N x y $. $d ph x y $.
renegmulnnass.a $e |- ( ph -> A e. RR ) $.
Expand All @@ -662602,14 +662650,6 @@ number axioms (add ~ ax-10 , ~ ax-11 , ~ ax-13 , ~ ax-nul , and remove
DYCVGOUTVIVJ $.
$}

$( ~ elznn0nn restated using ~ df-resub . (Contributed by SN,
25-Jan-2025.) $)
reelznn0nn $p |-
( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ ( 0 -R N ) e. NN ) ) ) $=
( cz wcel cn0 cr cneg cn wa cc0 cresub elznn0nn cmin df-neg wceq resubeqsub
wo co 0re mpan eqtr4id eleq1d pm5.32i orbi2i bitri ) ABCADCZAECZAFZGCZHZPUE
UFIAJQZGCZHZPAKUIULUEUFUHUKUFUGUJGUFUGIALQZUJAMIECUFUJUMNRIAOSTUAUBUCUD $.

$( Multiplication is commutative for nonnegative integers. Proven without
~ ax-mulcom . (Contributed by SN, 25-Jan-2025.) $)
nn0mulcom $p |- ( ( A e. NN0 /\ B e. NN0 ) -> ( A x. B ) = ( B x. A ) ) $=
Expand All @@ -662622,39 +662662,34 @@ number axioms (add ~ ax-10 , ~ ax-11 , ~ ax-13 , ~ ax-nul , and remove
$( $j usage 'nn0mulcom' avoids 'ax-mulcom'; $)

$( Lemma for ~ zmulcom . (Contributed by SN, 25-Jan-2025.) $)
zmulcomlem $p |- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN ) ->
zmulcomlem $p |- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) ->
( A x. B ) = ( B x. A ) ) $=
( cr wcel cresub co cn wa cmul wceq renegneg oveq1d ad2antrr rernegcl simpr
cc0 renegmulnnass oveq2d adantl 3eqtr3d adantll resubdi syl3anc remul01 syl
nnmulcom nnre 0red eqtrd 3eqtr2d ) ACDZPAEFZGDZHZBGDZHZPULEFZBIFZABIFZUSBAI
FZUKURUSJUMUOUKUQABIAKZLMZVBUPURPULBIFZEFZUSUTUPULBUKULCDZUMUOANMZUNUOOQVBU
PVDPBULIFZEFZBUQIFZUTUPVCVGPEUMUOVCVGJUKULBUFUARUPVIBPIFZVGEFZVHUPBCDZPCDVE
VIVKJUOVLUNBUGZSUPUHVFBPULUBUCUPVJPVGEUOVJPJZUNUOVLVNVMBUDUESLUIUPUQABIUKUQ
AJUMUOVAMRUJTT $.
( cn0 wcel cr cc0 cresub co cn wa wceq wo cmul elnn0 oveq1d ad2antrr oveq2d
adantl remul01 3eqtr3d renegneg rernegcl renegmulnnass adantll nnre resubdi
simpr nnmulcom 0red syl3anc eqtrd 3eqtr2d remul02 eqtr4d adantr oveq2 oveq1
syl eqeq12d syl5ibrcom imp jaodan sylan2b ) BCDAEDZFAGHZIDZJZBIDZBFKZLABMHZ
BAMHZKZBNVGVHVLVIVGVHJZFVEGHZBMHZVJVJVKVDVOVJKVFVHVDVNABMAUAZOPZVQVMVOFVEBM
HZGHZVJVKVMVEBVDVEEDZVFVHAUBPZVGVHUGUCVQVMVSFBVEMHZGHZBVNMHZVKVMVRWBFGVFVHV
RWBKVDVEBUHUDQVMWDBFMHZWBGHZWCVMBEDZFEDVTWDWFKVHWGVGBUEZRVMUIWABFVEUFUJVMWE
FWBGVHWEFKZVGVHWGWIWHBSURROUKVMVNABMVDVNAKVFVHVPPQULTTVGVIVLVGVLVIAFMHZFAMH
ZKZVDWLVFVDWJFWKASAUMUNUOVIVJWJVKWKBFAMUPBFAMUQUSUTVAVBVC $.

$( Multiplication is commutative for integers. Proven without ~ ax-mulcom .
(Contributed by SN, 25-Jan-2025.) $)
From this result and ~ grpcominv1 , we can show that rationals commute
under multiplication without using ~ ax-mulcom . (Contributed by SN,
25-Jan-2025.) $)
zmulcom $p |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A x. B ) = ( B x. A ) ) $=
( cz wcel cn0 cr cc0 cresub co cn wa wo cmul wceq reelznn0nn elnn0 rernegcl
zmulcomlem ad2antrr ad2antrl nn0mulcom remul01 remul02 eqtr4d oveq2 eqeq12d
adantr oveq1 syl5ibrcom jaodan sylan2b eqcomd ancoms impcom jaoian nnmulcom
imp sylanb ad2ant2l oveq2d simprr renegmulnnass simplr 3eqtr4d syl renegneg
remulneg2d oveq12d 3eqtr3d ccase syl2anb ) ACDAEDZAFDZGAHIZJDZKZLBEDZBFDZGB
HIZJDZKZLABMIZBAMIZNZBCDAOBOVLVQVPWAWDABUAVQVPBJDZBGNZLWDBPVPWEWDWFABRVPWFW
DVPWDWFAGMIZGAMIZNZVMWIVOVMWGGWHAUBAUCUDUGWFWBWGWCWHBGAMUEBGAMUHUFUIUQUJUKV
LAJDZAGNZLWAWDAPWJWAWDWKWAWJWDWAWJKWCWBBARULUMWAWKWDWAWDWKGBMIZBGMIZNZVRWNV
TVRWLGWMBUCBUBUDUGWKWBWLWCWMAGBMUHAGBMUEUFUIUNUOURVPWAKZGVNHIZGVSHIZMIZWQWP
MIZWBWCWOGWPVSMIZHIGWQVNMIZHIWRWSWOWTXAGHWOGVNVSMIZHIGVSVNMIZHIWTXAWOXBXCGH
VOVTXBXCNVMVRVNVSUPUSUTWOVNVSVMVNFDZVOWAAQZSZVPVRVTVAVBWOVSVNVRVSFDZVPVTBQZ
TZVMVOWAVCVBVDUTWOWPVSVMWPFDZVOWAVMXDXJXEVNQVESXIVGWOWQVNVRWQFDZVPVTVRXGXKX
HVSQVETXFVGVDWOWPAWQBMVMWPANVOWAAVFSZVRWQBNVPVTBVFTZVHWOWQBWPAMXMXLVHVIVJVK
$.
( cz wcel cn0 cr cresub co cn wa wo cmul wceq reelznn0nn zmulcomlem oveq2d
cc0 rernegcl ad2antrr ad2antrl nn0mulcom eqcomd ancoms simprr renegmulnnass
nnmulcom ad2ant2l simplr 3eqtr4d syl renegneg oveq12d 3eqtr3d ccase syl2anb
remulneg2d ) ACDAEDZAFDZQAGHZIDZJZKBEDZBFDZQBGHZIDZJZKABLHZBALHZMZBCDANBNUQ
VBVAVFVIABUAABOVFUQVIVFUQJVHVGBAOUBUCVAVFJZQUSGHZQVDGHZLHZVLVKLHZVGVHVJQVKV
DLHZGHQVLUSLHZGHVMVNVJVOVPQGVJQUSVDLHZGHQVDUSLHZGHVOVPVJVQVRQGUTVEVQVRMURVC
USVDUFUGPVJUSVDURUSFDZUTVFARZSZVAVCVEUDUEVJVDUSVCVDFDZVAVEBRZTZURUTVFUHUEUI
PVJVKVDURVKFDZUTVFURVSWEVTUSRUJSWDUPVJVLUSVCVLFDZVAVEVCWBWFWCVDRUJTWAUPUIVJ
VKAVLBLURVKAMUTVFAUKSZVCVLBMVAVEBUKTZULVJVLBVKALWHWGULUMUNUO $.
$( $j usage 'zmulcom' avoids 'ax-mulcom'; $)

$( From ~ grpcominv1 , ~ nnaddcom , and ~ zmulcom , we can show that integers
commute under addition and rationals commute under multiplication
without using ~ ax-mulcom . $)

${
mulgt0con1dlem.a $e |- ( ph -> A e. RR ) $.
mulgt0con1dlem.b $e |- ( ph -> B e. RR ) $.
Expand Down

0 comments on commit 0f706de

Please sign in to comment.