Skip to content

Library for Waikato Environment for Knowledge Analysis (WEKA) [Conversion of SQL and CSV to ARFF file]

Notifications You must be signed in to change notification settings

mentatpsi/MachineLearn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 

Repository files navigation

MachineLearn

Helper Libraries for Machine Learning Applications

For use with Weka 3: Data Mining Software in Java

Book: Data Mining: Practical Machine Learning Tools and Techniques

ARFF file format is used by the machine learning and data mining software Weka. This script was designed to make easier converts from data hosted on a database, csv, or a script to the arff file format.

arffhelper.py

Examples:

Manual - Set up using scripting:

	a1 = Attribute("sepallength")
	a2 = Attribute("sepalwidth")
	a3 = Attribute("petallength")
	a4 = Attribute("petalwidth")
	a5 = Attribute("class")
	a5.addChoices(["Iris-setosa","Iris-versicolor","Iris-virginica"])
	arffdoc = ArffDoc("iris")
	arffdoc.addAttribute(a1)
	arffdoc.addAttribute(a2)
	arffdoc.addAttribute(a3)
	arffdoc.addAttribute(a4)
	arffdoc.addAttribute(a5)
	arffdoc.addData(a1, [5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9])
	arffdoc.addData(a2, [3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1])
	arffdoc.addData(a3, [1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5])	
	arffdoc.addData(a4, [0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1])
	arffdoc.addData(a5, ["Iris-setosa", "Iris-setosa", "Iris-setosa", "Iris-setosa", "Iris-setosa", "Iris-setosa", "Iris-setosa", "Iris-setosa", "Iris-setosa", "Iris-setosa"])
	
	print(arffdoc.toString())
	arffdoc.export("test.arff")

SQL - Set up using Flask: (sqlite3 - easy to get into)

	app = Flask(__name__)
	app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test1.db'
	db = SQLAlchemy(app) # set up database
	
	sqlA = SQLAttacher(db) 
	sqlA.setQuery("select * from table;")	# set query for SQLAttacher
	attribute1 = Attribute("column1")
	attribute2 = Attribute("column2")
	attribute3 = Attribute("column3")
	choices = sqlA.getUnique(-1) #allows you to get a list of all the unique options for easy nominal choice addition
	attribute3.addChoices(choices)
	attributes = [attribute1, attribute2, attribute3]
	column = 0
	for attribute in attributes: # add all attributes and their mapping to the sql columns they're in
		sqlA.addAttribute(attribute, column)
		column+=1
	arffdoc = ArffDoc("test") # initialize with relation name
	arffdoc.setAttacher(sqlA) # Attach the SQLAttacher to the ArffDoc instance
	arffdoc.export("test.arff") # export the arff document

CSV - Set up using CSV File:

	csvAttach = CSVAttacher(filepath, headers=True) # Create CSV attacher and indicate if there are headers
	attribute1 = Attribute("column1")
	attribute2 = Attribute("column2")
	attribute3 = Attribute("column3")
	
	choices = csvAttach.getUnique(-1) #allows you to get a list of all the unique options for easy nominal choice addition
	attribute3.addChoices(choices)
	attributes = [attribute1, attribute2, attribute3]
	
	column = 0
	for attribute in attributes: # iterate upon all attributes and map to resulting row 
		csvAttach.addAttribute(attribute, column)
		column+=1
	arffdoc = ArffDoc("test") # initialize with relation name
	arffdoc.setAttacher(csvAttach) # connect the attacher to the ArffDoc instance
	arffdoc.export("testcsv.arff")	# export the arff document

Output file:

@RELATION iris
@ATTRIBUTE sepallength    	NUMERIC
@ATTRIBUTE sepalwidth    	NUMERIC
@ATTRIBUTE petallength	    NUMERIC
@ATTRIBUTE petalwidth	    NUMERIC
@ATTRIBUTE class	    {Iris-setosa,Iris-versicolor,Iris-virginica}

@DATA
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa

About

Library for Waikato Environment for Knowledge Analysis (WEKA) [Conversion of SQL and CSV to ARFF file]

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages