Single-cell Variational Inference
- Free software: MIT license
- Documentation: https://scvi.readthedocs.io.
- Install Python 3.7. We typically use the Miniconda Python distribution and Linux.
- Install PyTorch. If you have an Nvidia GPU, be sure to install a version of PyTorch that supports it -- scVI runs much faster with a discrete GPU.
Install scVI through conda:
conda install scvi -c bioconda -c conda-forge
Alternatively, you may try pip (
pip install scvi
), or you may clone this repository and runpython setup.py install
.If you wish to use multiple GPUs for hyperparameter tuning, install MongoDb.
- Follow along with our Jupyter notebooks to quickly get familiar with scVI!
- Getting started:
- Analyzing several datasets:
Romain Lopez, Jeffrey Regier, Michael Cole, Michael I. Jordan, Nir Yosef. "Deep generative modeling for single-cell transcriptomics." Nature Methods, 2018. [pdf]
Chenling Xu∗, Romain Lopez∗, Edouard Mehlman∗, Jeffrey Regier, Michael I. Jordan, Nir Yosef. "Harmonization and Annotation of Single-cell Transcriptomics data with Deep Generative Models." Submitted, 2019. [pdf]
Romain Lopez∗, Achille Nazaret∗, Maxime Langevin*, Jules Samaran*, Jeffrey Regier*, Michael I. Jordan, Nir Yosef. "A joint model of unpaired data from scRNA-seq and spatial transcriptomics for imputing missing gene expression measurements." ICML Workshop on Computational Biology, 2019. [pdf]