Skip to content

基于电影评论数据的中文情感分析(含训练数据、验证数据) Machine Learning and Deep Learning implementations.

Notifications You must be signed in to change notification settings

lxw0109/ChineseSentimentAnalysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Sentiment Analysis Implementations

基于电影评论数据的中文情感分析
Chinese Sentiment Analysis based on ML(Machine Learning) and DL(Deep Learning) algorithms, including Naive-Bayes, Decision-Tree, KNN, SVM, NN(MLP), CNN, RNN(LSTM).

0. Requirements

All code in this project is implemented in Python3.6+.
And all the essential packages are listed in requirements.txt, you can install them by pip install -r requirements.txt -i https://pypi.douban.com/simple/
Anaconda or virtualenv + virtualenvwrapper are strongly recommended to manage your Python environments.

1. Data Preparation

1).数据集
使用电影评论数据作为训练数据集. 其中, 训练数据集20000条(正负向各10000条); 测试数据集6000条(正负向各3000条)

2).数据预处理
1.去除停用词, 并使用jieba进行分词
2.使用预训练的词向量模型,对句子进行向量化

2. 各种实现方法准确率对比

Algorithm Accuracy(avg) Accuracy(fasttext) Accuracy(matrix) 说明
Naive-Bayes 73.72% 74.32% 69.34%(拼接和补齐) /
Decision-Tree 65.27% 66.84% 55.34%(拼接和补齐) /
KNN 76.69%({'n_neighbors': 19}) 77.43%({'n_neighbors': 17}) /(拼接和补齐) 使用GridSearchCV进行参数选择
SVM 79.29%({'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}) 78.93%({'C': 1000, 'kernel': 'linear'}) /(拼接和补齐) 使用GridSearchCV进行参数选择
NN(MLP) 80.24% 80.41% / 采用EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
CNN / / 81.34% 采用EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
LSTM 78.76% 77.26% 84.06% 采用EarlyStopping, ModelCheckpoint, ReduceLROnPlateau

3. 各种实现方法acc-loss曲线绘制

1).NN(MLP)实现方法结果绘制:
使用词向量和的平均表示句子:
history_nn_avg.png
使用fasttext.get_numpy_sentence_vector()词向量表示句子:
history_nn_fasttext.png
2).CNN实现方法结果绘制:
使用fasttext.get_numpy_vector()词向量组成的矩阵表示句子:
history_cnn_matrix.png
3).LSTM实现方法结果绘制:
使用词向量和的平均表示句子:
history_lstm_avg.png
使用fasttext.get_numpy_sentence_vector()词向量表示句子:
history_lstm_fasttext.png
使用fasttext.get_numpy_vector()词向量组成的矩阵表示句子:
history_lstm_matrix.png

About

基于电影评论数据的中文情感分析(含训练数据、验证数据) Machine Learning and Deep Learning implementations.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages