forked from lanl/hippynn
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add test for atomization consistent learning
- Loading branch information
1 parent
5aa82ed
commit 318d74a
Showing
1 changed file
with
60 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
''' | ||
To obtain the data files needed for this example, use the script process_QM7_data.py, | ||
also located in this folder. The script contains further instructions for use. | ||
''' | ||
|
||
import torch | ||
|
||
# Setup pytorch things | ||
torch.set_default_dtype(torch.float64) | ||
|
||
import hippynn | ||
|
||
netname = "TEST_BAREBONES_SCRIPT" | ||
|
||
# Hyperparameters for the network | ||
# These are set deliberately small so that you can easily run the example on a laptop or similar. | ||
network_params = { | ||
"possible_species": [0, 1, 6, 7, 8, 16], # Z values of the elements in QM7 | ||
"n_features": 20, # Number of neurons at each layer | ||
"n_sensitivities": 20, # Number of sensitivity functions in an interaction layer | ||
"dist_soft_min": 1.6, # qm7 is in Bohr! | ||
"dist_soft_max": 10.0, | ||
"dist_hard_max": 12.5, | ||
"n_interaction_layers": 2, # Number of interaction blocks | ||
"n_atom_layers": 3, # Number of atom layers in an interaction block | ||
} | ||
|
||
# Define a model | ||
from hippynn.graphs import inputs, networks, targets, physics | ||
|
||
species = inputs.SpeciesNode(db_name="Z") | ||
positions = inputs.PositionsNode(db_name="R") | ||
|
||
network = networks.Hipnn("hipnn_model", (species, positions), module_kwargs=network_params) | ||
# henergy = targets.HEnergyNode("HEnergy", network, db_name="T") | ||
henergy = targets.AtomizationEnergyNode("HEnergy", network, db_name="T") | ||
|
||
model = hippynn.GraphModule([species,positions], [henergy.mol_energy]) | ||
|
||
from hippynn import ase_interface as hai | ||
import ase.units, ase.build | ||
|
||
atoms = ase.build.molecule("H2O") | ||
|
||
pos = torch.as_tensor(atoms.positions / ase.units.Bohr).unsqueeze(0).to(torch.get_default_dtype()) | ||
sp = torch.as_tensor(atoms.get_atomic_numbers()).unsqueeze(0) | ||
pred = hippynn.Predictor.from_graph(model) | ||
original_en = pred(Z=sp, R=pos)[henergy.mol_energy] | ||
pred.graph.print_structure() | ||
print("predictor output:", original_en) | ||
calc = hai.calculator_from_model(model, dist_unit=ase.units.Bohr) | ||
|
||
calc.module.print_structure() | ||
atoms.calc = calc | ||
ase_en = atoms.get_potential_energy() / (ase.units.kcal / ase.units.mol) | ||
print("ASE Energy is:", ase_en) | ||
print("Ratio:", ase_en/original_en) | ||
|
||
if not torch.allclose(torch.as_tensor(ase_en), original_en): | ||
raise ValueError(f"Values do not match!: {ase_en},{original_en}") |