Skip to content

Commit

Permalink
Propagates list of flat pair read noises to ptcDataset
Browse files Browse the repository at this point in the history
  • Loading branch information
Alex-Broughton authored and Alex Broughton committed Jan 27, 2024
1 parent 67e2e30 commit bb3272b
Show file tree
Hide file tree
Showing 2 changed files with 34 additions and 27 deletions.
47 changes: 20 additions & 27 deletions python/lsst/cp/pipe/ptc/cpExtractPtcTask.py
Original file line number Diff line number Diff line change
Expand Up @@ -434,31 +434,6 @@ def run(self, inputExp, inputDims, taskMetadata, inputPhotodiodeData=None):
pdCalib.currentScale = self.config.photodiodeCurrentScale
monitorDiodeCharge[expId] = pdCalib.integrate()

# Get read noise. Try from the exposure, then try
# taskMetadata. This adds a get() for the exposures.
readNoiseLists = {}
for pairIndex, expRefs in inputExp.items():
# This yields an index (exposure_time, seq_num, or flux)
# and a pair of references at that index.
for expRef, expId in expRefs:
# This yields an exposure ref and an exposureId.
exposureMetadata = expRef.get(component="metadata")
metadataIndex = inputDims.index(expId)
thisTaskMetadata = taskMetadata[metadataIndex]

for ampName in ampNames:
if ampName not in readNoiseLists:
readNoiseLists[ampName] = [self.getReadNoise(exposureMetadata,
thisTaskMetadata, ampName)]
else:
readNoiseLists[ampName].append(self.getReadNoise(exposureMetadata,
thisTaskMetadata, ampName))

readNoiseDict = {ampName: 0.0 for ampName in ampNames}
for ampName in ampNames:
# Take median read noise value
readNoiseDict[ampName] = np.nanmedian(readNoiseLists[ampName])

# Output list with PTC datasets.
partialPtcDatasetList = []
# The number of output references needs to match that of input
Expand Down Expand Up @@ -535,6 +510,24 @@ def run(self, inputExp, inputDims, taskMetadata, inputPhotodiodeData=None):
im1Area, im2Area, imStatsCtrl, mu1, mu2 = self.getImageAreasMasksStats(exp1, exp2,
region=region)

# Get the read noise for each exposure
readNoise1 = dict()
readNoise2 = dict()
meanReadNoise = dict()

expMetadata1 = expRef1.get(component="metadata")
metadataIndex1 = inputDims.index(expId1)
thisTaskMetadata1 = taskMetadata[metadataIndex1]

expMetadata2 = expRef2.get(component="metadata")
metadataIndex2 = inputDims.index(expId2)
thisTaskMetadata2 = taskMetadata[metadataIndex2]

readNoise1[ampName] = self.getReadNoise(expMetadata1, thisTaskMetadata1, ampName)
readNoise2[ampName] = self.getReadNoise(expMetadata2, thisTaskMetadata2, ampName)

meanReadNoise[ampName] = np.nanmean([readNoise1[ampName], readNoise2[ampName]])

# We demand that both mu1 and mu2 be finite and greater than 0.
if not np.isfinite(mu1) or not np.isfinite(mu2) \
or ((np.nan_to_num(mu1) + np.nan_to_num(mu2)/2.) <= 0.0):
Expand Down Expand Up @@ -568,7 +561,7 @@ def run(self, inputExp, inputDims, taskMetadata, inputPhotodiodeData=None):
if self.config.doGain:
gain = self.getGainFromFlatPair(im1Area, im2Area, imStatsCtrl, mu1, mu2,
correctionType=self.config.gainCorrectionType,
readNoise=readNoiseDict[ampName])
readNoise=meanReadNoise[ampName])
else:
gain = np.nan

Expand Down Expand Up @@ -667,7 +660,7 @@ def run(self, inputExp, inputDims, taskMetadata, inputPhotodiodeData=None):
covariance=covArray[0, :, :],
covSqrtWeights=covSqrtWeights[0, :, :],
gain=gain,
noise=readNoiseDict[ampName],
noise=meanReadNoise[ampName],
histVar=histVar,
histChi2Dof=histChi2Dof,
kspValue=kspValue,
Expand Down
14 changes: 14 additions & 0 deletions python/lsst/cp/pipe/ptc/cpSolvePtcTask.py
Original file line number Diff line number Diff line change
Expand Up @@ -334,6 +334,7 @@ def run(self, inputCovariances, camera=None, detId=0):
ptcFitType=self.config.ptcFitType,
covMatrixSide=self.config.maximumRangeCovariancesAstier,
covMatrixSideFullCovFit=self.config.maximumRangeCovariancesAstierFullCovFit)

for partialPtcDataset in inputCovariances:
# Ignore dummy datasets
if partialPtcDataset.ptcFitType == 'DUMMY':
Expand All @@ -360,6 +361,8 @@ def run(self, inputCovariances, camera=None, detId=0):
partialPtcDataset.histChi2Dofs[ampName][0])
datasetPtc.kspValues[ampName] = np.append(datasetPtc.kspValues[ampName],
partialPtcDataset.kspValues[ampName][0])
datasetPtc.noiseList[ampName] = np.append(datasetPtc.noiseList[ampName],
partialPtcDataset.noise[ampName])
datasetPtc.covariances[ampName] = np.append(
datasetPtc.covariances[ampName].ravel(),
partialPtcDataset.covariances[ampName].ravel()
Expand Down Expand Up @@ -466,6 +469,17 @@ def run(self, inputCovariances, camera=None, detId=0):
# PhotonTransferCurveDataset object.
datasetPtc = self.fitMeasurementsToModel(datasetPtc)

# Initial validation of PTC fit.
for ampName in ampNames:
noise = np.nanmedian(datasetPtc.noiseList[ampName])
noiseFitted = np.sqrt(datasetPtc.noise[ampName])

# Check if noise is close to noiseFitted
if not np.isclose(noiseFitted, noise, rtol=0.05, atol=0.0):
self.log.warning(f"Read noise from PTC fit ({noiseFitted}) is not consistent "
f"with read noise measured from overscan ({noise}) for "
f"amplifier {ampName}. Try adjusting the fit range.")

if camera:
detector = camera[detId]
else:
Expand Down

0 comments on commit bb3272b

Please sign in to comment.