Skip to content
Lionel Siess edited this page Dec 20, 2023 · 6 revisions

Interfacing MCFOST

Pre-processor flags: -DWIND -DSINK_RADIATION -DDUST_NUCLEATION -DMCFOST -DINJECT_PARTICLES -DLIVE_ANALYSIS

Install ds9 for visualization

mcfost -get_para
mv ref4.1.para wind.para

edit parameter card

MCFOST postprocessing

The main parameters for the post-processing of the Phantom dumps are

MAPS

Defines the number of grid points in the plnae (nx,ny), the inclinations and the azimuth

  301 301 50.            grid (nx,ny), size [AU]
  0.  90.  2  F          imin, imax, n_incl, centered ?
  0    324.   10         az_min, az_max, n_az angles

Symetries

 Should be put to false when using Phantom dumps

  F                   image symmetry
  F                   central symmetry
  F                   axial symmetry (important only if N_phi > 1)

Grain properties

 one should use the correct extinction coefficients from the list of files in $MCFOST_INSTALL/utils/Dust/
 For amorphous carbon, one should use : **ac_opct.dat**

  1                          Number of species
  Mie  1 2  0.0  1.0  0.9    Grain type (Mie or DHS), N_components, mixing rule (1 = EMT or 2 = coating),  porosity, mass fraction, Vmax (for DHS)
  Draine_Si_sUV.dat  1.0     Optical indices file, volume fraction
  1                          Heating method : 1 = RE + LTE, 2 = RE + NLTE, 3 = NRE
  0.03  3.0 3.5 100          amin, amax [mum], aexp, n_grains (log distribution)

Grid geometry and size, Disk physics, Density structure Star Properties

 no use with Phantom dumps

Star properties

overwritten, taken from dump header by Phantom

To speed up calculation, one can disable SED calculation in section Wavelength

MCFOST generates fits files. A good tool to visualize the image is with SAO ds9

Luminosity curves

 import pymcfost
 test = pymcfost.Image("data_1.6/")
 plt.plot(np.sum(test.image[0,:,1,:,:],axis=(1,2)))
Clone this wiki locally