forked from danieljprice/phantom
-
Notifications
You must be signed in to change notification settings - Fork 1
MCFOST
Lionel Siess edited this page Dec 20, 2023
·
6 revisions
Pre-processor flags: -DWIND -DSINK_RADIATION -DDUST_NUCLEATION -DMCFOST -DINJECT_PARTICLES -DLIVE_ANALYSIS
Install ds9 for visualization
mcfost -get_para
mv ref4.1.para wind.para
edit parameter card
The main parameters for the post-processing of the Phantom dumps are
MAPS
Defines the number of grid points in the plnae (nx,ny), the inclinations and the azimuth
301 301 50. grid (nx,ny), size [AU]
0. 90. 2 F imin, imax, n_incl, centered ?
0 324. 10 az_min, az_max, n_az angles
Symetries
Should be put to false when using Phantom dumps
F image symmetry
F central symmetry
F axial symmetry (important only if N_phi > 1)
Grain properties
one should use the correct extinction coefficients from the list of files in $MCFOST_INSTALL/utils/Dust/
For amorphous carbon, one should use : **ac_opct.dat**
1 Number of species
Mie 1 2 0.0 1.0 0.9 Grain type (Mie or DHS), N_components, mixing rule (1 = EMT or 2 = coating), porosity, mass fraction, Vmax (for DHS)
Draine_Si_sUV.dat 1.0 Optical indices file, volume fraction
1 Heating method : 1 = RE + LTE, 2 = RE + NLTE, 3 = NRE
0.03 3.0 3.5 100 amin, amax [mum], aexp, n_grains (log distribution)
Grid geometry and size, Disk physics, Density structure Star Properties
no use with Phantom dumps
Star properties
overwritten, taken from dump header by Phantom
To speed up calculation, one can disable SED calculation in section Wavelength
MCFOST generates fits files. A good tool to visualize the image is with SAO ds9
import pymcfost
test = pymcfost.Image("data_1.6/")
plt.plot(np.sum(test.image[0,:,1,:,:],axis=(1,2)))