-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #398 from leondavi/api_load_indicator
Using zlib to compress data
- Loading branch information
Showing
9 changed files
with
254 additions
and
25 deletions.
There are no files selected for viewing
9 changes: 9 additions & 0 deletions
9
inputJsonsFiles/ConnectionMap/conn_paper_test_5d_4r_4s_1c_1w.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
{ | ||
"connectionsMap": | ||
{ | ||
"r1":["mainServer", "c1", "s1", "r2"], | ||
"r2":["s2", "r3"], | ||
"r3":["s3","r4"], | ||
"r4":["s4", "r1"] | ||
} | ||
} |
146 changes: 146 additions & 0 deletions
146
inputJsonsFiles/DistributedConfig/dc_paper_test_5d_4r_4s_1c_1w.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,146 @@ | ||
{ | ||
"nerlnetSettings": { | ||
"frequency": "100", | ||
"batchSize": "50" | ||
}, | ||
"mainServer": { | ||
"port": "8080", | ||
"args": "" | ||
}, | ||
"apiServer": { | ||
"port": "8081", | ||
"args": "" | ||
}, | ||
"devices": [ | ||
{ | ||
"name": "NerlNist-MS", | ||
"ipv4": "10.0.0.46", | ||
"entities": "mainServer,apiServer,c1" | ||
}, | ||
{ | ||
"name": "NerlNist-1", | ||
"ipv4": "10.0.0.36", | ||
"entities": "s1,r1" | ||
}, | ||
{ | ||
"name": "NerlNist-2", | ||
"ipv4": "10.0.0.37", | ||
"entities": "s2,r2" | ||
}, | ||
{ | ||
"name": "NerlNist-4", | ||
"ipv4": "10.0.0.40", | ||
"entities": "s3,r3" | ||
}, | ||
{ | ||
"name": "NerlNist-7", | ||
"ipv4": "10.0.0.42", | ||
"entities": "s4,r4" | ||
} | ||
], | ||
"routers": [ | ||
{ | ||
"name": "r1", | ||
"port": "8090", | ||
"policy": "0" | ||
}, | ||
{ | ||
"name": "r2", | ||
"port": "8091", | ||
"policy": "0" | ||
}, | ||
{ | ||
"name": "r3", | ||
"port": "8092", | ||
"policy": "0" | ||
}, | ||
{ | ||
"name": "r4", | ||
"port": "8093", | ||
"policy": "0" | ||
} | ||
], | ||
"sources": [ | ||
{ | ||
"name": "s1", | ||
"port": "8086", | ||
"frequency": "30", | ||
"policy": "0", | ||
"epochs": "1", | ||
"type": "0" | ||
}, | ||
{ | ||
"name": "s2", | ||
"port": "8087", | ||
"frequency": "30", | ||
"policy": "0", | ||
"epochs": "1", | ||
"type": "0" | ||
}, | ||
{ | ||
"name": "s3", | ||
"port": "8088", | ||
"frequency": "30", | ||
"policy": "0", | ||
"epochs": "1", | ||
"type": "0" | ||
}, | ||
{ | ||
"name": "s4", | ||
"port": "8089", | ||
"frequency": "30", | ||
"policy": "0", | ||
"epochs": "1", | ||
"type": "0" | ||
} | ||
], | ||
"clients": [ | ||
{ | ||
"name": "c1", | ||
"port": "8082", | ||
"workers": "w1" | ||
} | ||
], | ||
"workers": [ | ||
{ | ||
"name": "w1", | ||
"model_sha": "9c5f1261068be7be96487a2cae282aa22e8c1cb482a5bf8d557bc8e1e2b6fef0" | ||
} | ||
], | ||
"model_sha": { | ||
"9c5f1261068be7be96487a2cae282aa22e8c1cb482a5bf8d557bc8e1e2b6fef0": { | ||
"modelType": "0", | ||
"_doc_modelType": " nn:0 | approximation:1 | classification:2 | forecasting:3 | image_classification:4 | text_classification:5 | text_generation:6 | auto_association:7 | autoencoder:8 | ae_classifier:9 |", | ||
"modelArgs": "", | ||
"_doc_modelArgs": "Extra arguments to model", | ||
"layersSizes": "28x28x1k5x5x1x6p0s1t1,28x28x6k2x2p0s2,14x14x6k4x4x6x12p0s1t0,1,32,10", | ||
"_doc_layersSizes": "List of postive integers [L0, L1, ..., LN]", | ||
"layerTypesList": "2,4,2,9,3,5", | ||
"_doc_LayerTypes": " Default:0 | Scaling:1 | Conv:2 | Perceptron:3 | Pooling:4 | Probabilistic:5 | LSTM:6 | Reccurrent:7 | Unscaling:8 | Flatten:9 | Bounding:10 |", | ||
"layers_functions": "6,2,6,1,6,4", | ||
"_doc_layers_functions_activation": " Threshold:1 | Sign:2 | Logistic:3 | Tanh:4 | Linear:5 | ReLU:6 | eLU:7 | SeLU:8 | Soft-plus:9 | Soft-sign:10 | Hard-sigmoid:11 |", | ||
"_doc_layer_functions_pooling": " none:1 | Max:2 | Avg:3 |", | ||
"_doc_layer_functions_probabilistic": " Binary:1 | Logistic:2 | Competitive:3 | Softmax:4 |", | ||
"_doc_layer_functions_scaler": " none:1 | MinMax:2 | MeanStd:3 | STD:4 | Log:5 |", | ||
"lossMethod": "6", | ||
"lossArgs": "", | ||
"_doc_lossMethod": " SSE:1 | MSE:2 | NSE:3 | MinkowskiE:4 | WSE:5 | CEE:6 |", | ||
"lr": "0.01", | ||
"_doc_lr": "Positve float", | ||
"epochs": "1", | ||
"_doc_epochs": "Positve Integer", | ||
"optimizer": "5", | ||
"_doc_optimizer": " GD:0 | CGD:1 | SGD:2 | QuasiNeuton:3 | LVM:4 | ADAM:5 |", | ||
"optimizerArgs": "none", | ||
"_doc_optimizerArgs": "String", | ||
"infraType": "0", | ||
"_doc_infraType": " opennn:0 | wolfengine:1 |", | ||
"distributedSystemType": "0", | ||
"_doc_distributedSystemType": " none:0 | FedClientAvg:1 | FedServerAvg:2 | FedClientWeightedAvgClassification:3 | FedServerWeightedAvgClassification:4 | FedClientAE:5 | FedServerAE:6 | tiles:7 |", | ||
"distributedSystemArgs": "none", | ||
"_doc_distributedSystemArgs": "String", | ||
"distributedSystemToken": "none", | ||
"_doc_distributedSystemToken": "Token that associates distributed group of workers and parameter-server" | ||
} | ||
} | ||
} |
70 changes: 70 additions & 0 deletions
70
inputJsonsFiles/experimentsFlow/exp_paper_test_5d_4r_4s_1c_1w.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
{ | ||
"experimentName": "mnist_rr", | ||
"experimentType": "classification", | ||
"batchSize": 50, | ||
"csvFilePath": "/tmp/nerlnet/data/NerlnetData-master/nerlnet/mnist_norm/mnist_train_255_norm.csv", | ||
"numOfFeatures": "784", | ||
"numOfLabels": "10", | ||
"headersNames": "0,1,2,3,4,5,6,7,8,9", | ||
"Phases": | ||
[ | ||
{ | ||
"phaseName": "training_phase", | ||
"phaseType": "training", | ||
"sourcePieces": | ||
[ | ||
{ | ||
"sourceName": "s1", | ||
"startingSample": "0", | ||
"numOfBatches": "50", | ||
"workers": "w1", | ||
"nerltensorType": "float" | ||
}, | ||
{ | ||
"sourceName": "s2", | ||
"startingSample": "10000", | ||
"numOfBatches": "50", | ||
"workers": "w1", | ||
"nerltensorType": "float" | ||
}, | ||
{ | ||
"sourceName": "s3", | ||
"startingSample": "20000", | ||
"numOfBatches": "50", | ||
"workers": "w1", | ||
"nerltensorType": "float" | ||
}, | ||
{ | ||
"sourceName": "s4", | ||
"startingSample": "30000", | ||
"numOfBatches": "50", | ||
"workers": "w1", | ||
"nerltensorType": "float" | ||
} | ||
] | ||
}, | ||
{ | ||
"phaseName": "prediction_phase", | ||
"phaseType": "prediction", | ||
"sourcePieces": | ||
[ | ||
{ | ||
"sourceName": "s3", | ||
"startingSample": "40000", | ||
"numOfBatches": "50", | ||
"workers": "w1", | ||
"nerltensorType": "float" | ||
}, | ||
{ | ||
"sourceName": "s4", | ||
"startingSample": "50000", | ||
"numOfBatches": "50", | ||
"workers": "w1", | ||
"nerltensorType": "float" | ||
} | ||
] | ||
} | ||
] | ||
} | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters