Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: finish alignment of List/Array/Vector.append lemmas #6617

Merged
merged 1 commit into from
Jan 13, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
218 changes: 214 additions & 4 deletions src/Init/Data/Array/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1504,14 +1504,20 @@ theorem filterMap_eq_push_iff {f : α → Option β} {l : Array α} {l' : Array
· rintro ⟨⟨l₁⟩, a, ⟨l₂⟩, h₁, h₂, h₃, h₄⟩
refine ⟨l₂.reverse, a, l₁.reverse, by simp_all⟩

/-! Content below this point has not yet been aligned with `List`. -/

/-! ### singleton -/

@[simp] theorem singleton_def (v : α) : Array.singleton v = #[v] := rfl

/-! ### append -/

@[simp] theorem size_append (as bs : Array α) : (as ++ bs).size = as.size + bs.size := by
simp only [size, toList_append, List.length_append]

@[simp] theorem append_push {as bs : Array α} {a : α} : as ++ bs.push a = (as ++ bs).push a := by
cases as
cases bs
simp

@[simp] theorem toArray_eq_append_iff {xs : List α} {as bs : Array α} :
xs.toArray = as ++ bs ↔ xs = as.toList ++ bs.toList := by
cases as
Expand Down Expand Up @@ -1539,8 +1545,24 @@ theorem mem_append_left {a : α} {l₁ : Array α} (l₂ : Array α) (h : a ∈
theorem mem_append_right {a : α} (l₁ : Array α) {l₂ : Array α} (h : a ∈ l₂) : a ∈ l₁ ++ l₂ :=
mem_append.2 (Or.inr h)

@[simp] theorem size_append (as bs : Array α) : (as ++ bs).size = as.size + bs.size := by
simp only [size, toList_append, List.length_append]
theorem not_mem_append {a : α} {s t : Array α} (h₁ : a ∉ s) (h₂ : a ∉ t) : a ∉ s ++ t :=
mt mem_append.1 $ not_or.mpr ⟨h₁, h₂⟩

/--
See also `eq_push_append_of_mem`, which proves a stronger version
in which the initial array must not contain the element.
-/
theorem append_of_mem {a : α} {l : Array α} (h : a ∈ l) : ∃ s t : Array α, l = s.push a ++ t := by
obtain ⟨s, t, w⟩ := List.append_of_mem (l := l.toList) (by simpa using h)
replace w := congrArg List.toArray w
refine ⟨s.toArray, t.toArray, by simp_all⟩

theorem mem_iff_append {a : α} {l : Array α} : a ∈ l ↔ ∃ s t : Array α, l = s.push a ++ t :=
⟨append_of_mem, fun ⟨s, t, e⟩ => e ▸ by simp⟩

theorem forall_mem_append {p : α → Prop} {l₁ l₂ : Array α} :
(∀ (x) (_ : x ∈ l₁ ++ l₂), p x) ↔ (∀ (x) (_ : x ∈ l₁), p x) ∧ (∀ (x) (_ : x ∈ l₂), p x) := by
simp only [mem_append, or_imp, forall_and]

theorem empty_append (as : Array α) : #[] ++ as = as := by simp

Expand Down Expand Up @@ -1599,6 +1621,194 @@ theorem getElem_of_append {l l₁ l₂ : Array α} (eq : l = l₁.push a ++ l₂
rw [← getElem?_eq_getElem, eq, getElem?_append_left (by simp; omega), ← h]
simp

@[simp 1100] theorem append_singleton {a : α} {as : Array α} : as ++ #[a] = as.push a := by
cases as
simp

theorem append_inj {s₁ s₂ t₁ t₂ : Array α} (h : s₁ ++ t₁ = s₂ ++ t₂) (hl : s₁.size = s₂.size) :
s₁ = s₂ ∧ t₁ = t₂ := by
rcases s₁ with ⟨s₁⟩
rcases s₂ with ⟨s₂⟩
rcases t₁ with ⟨t₁⟩
rcases t₂ with ⟨t₂⟩
simpa using List.append_inj (by simpa using h) (by simpa using hl)

theorem append_inj_right {s₁ s₂ t₁ t₂ : Array α}
(h : s₁ ++ t₁ = s₂ ++ t₂) (hl : s₁.size = s₂.size) : t₁ = t₂ :=
(append_inj h hl).right

theorem append_inj_left {s₁ s₂ t₁ t₂ : Array α}
(h : s₁ ++ t₁ = s₂ ++ t₂) (hl : s₁.size = s₂.size) : s₁ = s₂ :=
(append_inj h hl).left

/-- Variant of `append_inj` instead requiring equality of the sizes of the second arrays. -/
theorem append_inj' {s₁ s₂ t₁ t₂ : Array α} (h : s₁ ++ t₁ = s₂ ++ t₂) (hl : t₁.size = t₂.size) :
s₁ = s₂ ∧ t₁ = t₂ :=
append_inj h <| @Nat.add_right_cancel _ t₁.size _ <| by
let hap := congrArg size h; simp only [size_append, ← hl] at hap; exact hap

/-- Variant of `append_inj_right` instead requiring equality of the sizes of the second arrays. -/
theorem append_inj_right' {s₁ s₂ t₁ t₂ : Array α}
(h : s₁ ++ t₁ = s₂ ++ t₂) (hl : t₁.size = t₂.size) : t₁ = t₂ :=
(append_inj' h hl).right

/-- Variant of `append_inj_left` instead requiring equality of the sizes of the second arrays. -/
theorem append_inj_left' {s₁ s₂ t₁ t₂ : Array α}
(h : s₁ ++ t₁ = s₂ ++ t₂) (hl : t₁.size = t₂.size) : s₁ = s₂ :=
(append_inj' h hl).left

theorem append_right_inj {t₁ t₂ : Array α} (s) : s ++ t₁ = s ++ t₂ ↔ t₁ = t₂ :=
⟨fun h => append_inj_right h rfl, congrArg _⟩

theorem append_left_inj {s₁ s₂ : Array α} (t) : s₁ ++ t = s₂ ++ t ↔ s₁ = s₂ :=
⟨fun h => append_inj_left' h rfl, congrArg (· ++ _)⟩

@[simp] theorem append_left_eq_self {x y : Array α} : x ++ y = y ↔ x = #[] := by
rw [← append_left_inj (s₁ := x), nil_append]

@[simp] theorem self_eq_append_left {x y : Array α} : y = x ++ y ↔ x = #[] := by
rw [eq_comm, append_left_eq_self]

@[simp] theorem append_right_eq_self {x y : Array α} : x ++ y = x ↔ y = #[] := by
rw [← append_right_inj (t₁ := y), append_nil]

@[simp] theorem self_eq_append_right {x y : Array α} : x = x ++ y ↔ y = #[] := by
rw [eq_comm, append_right_eq_self]

@[simp] theorem append_eq_empty_iff : p ++ q = #[] ↔ p = #[] ∧ q = #[] := by
cases p <;> simp

@[simp] theorem empty_eq_append_iff : #[] = a ++ b ↔ a = #[] ∧ b = #[] := by
rw [eq_comm, append_eq_empty_iff]

theorem append_ne_empty_of_left_ne_empty {s : Array α} (h : s ≠ #[]) (t : Array α) :
s ++ t ≠ #[] := by
simp_all

theorem append_ne_empty_of_right_ne_empty (s : Array α) : t ≠ #[] → s ++ t ≠ #[] := by
simp_all

theorem append_eq_push_iff {a b c : Array α} {x : α} :
a ++ b = c.push x ↔ (b = #[] ∧ a = c.push x) ∨ (∃ b', b = b'.push x ∧ c = a ++ b') := by
rcases a with ⟨a⟩
rcases b with ⟨b⟩
rcases c with ⟨c⟩
simp only [List.append_toArray, List.push_toArray, mk.injEq, List.append_eq_append_iff,
toArray_eq_append_iff]
constructor
· rintro (⟨a', rfl, rfl⟩ | ⟨b', rfl, h⟩)
· right; exact ⟨⟨a'⟩, by simp⟩
· rw [List.singleton_eq_append_iff] at h
obtain (⟨rfl, rfl⟩ | ⟨rfl, rfl⟩) := h
· right; exact ⟨#[], by simp⟩
· left; simp
· rintro (⟨rfl, rfl⟩ | ⟨b', h, rfl⟩)
· right; exact ⟨[x], by simp⟩
· left; refine ⟨b'.toList, ?_⟩
replace h := congrArg Array.toList h
simp_all

theorem push_eq_append_iff {a b c : Array α} {x : α} :
c.push x = a ++ b ↔ (b = #[] ∧ a = c.push x) ∨ (∃ b', b = b'.push x ∧ c = a ++ b') := by
rw [eq_comm, append_eq_push_iff]

theorem append_eq_singleton_iff {a b : Array α} {x : α} :
a ++ b = #[x] ↔ (a = #[] ∧ b = #[x]) ∨ (a = #[x] ∧ b = #[]) := by
rcases a with ⟨a⟩
rcases b with ⟨b⟩
simp only [List.append_toArray, mk.injEq, List.append_eq_singleton_iff, toArray_eq_append_iff]

theorem singleton_eq_append_iff {a b : Array α} {x : α} :
#[x] = a ++ b ↔ (a = #[] ∧ b = #[x]) ∨ (a = #[x] ∧ b = #[]) := by
rw [eq_comm, append_eq_singleton_iff]

theorem append_eq_append_iff {a b c d : Array α} :
a ++ b = c ++ d ↔ (∃ a', c = a ++ a' ∧ b = a' ++ d) ∨ ∃ c', a = c ++ c' ∧ d = c' ++ b := by
rcases a with ⟨a⟩
rcases b with ⟨b⟩
rcases c with ⟨c⟩
rcases d with ⟨d⟩
simp only [List.append_toArray, mk.injEq, List.append_eq_append_iff, toArray_eq_append_iff]
constructor
· rintro (⟨a', rfl, rfl⟩ | ⟨c', rfl, rfl⟩)
· left; exact ⟨⟨a'⟩, by simp⟩
· right; exact ⟨⟨c'⟩, by simp⟩
· rintro (⟨a', rfl, rfl⟩ | ⟨c', rfl, rfl⟩)
· left; exact ⟨a'.toList, by simp⟩
· right; exact ⟨c'.toList, by simp⟩

theorem set_append {s t : Array α} {i : Nat} {x : α} (h : i < (s ++ t).size) :
(s ++ t).set i x =
if h' : i < s.size then
s.set i x ++ t
else
s ++ t.set (i - s.size) x (by simp at h; omega) := by
rcases s with ⟨s⟩
rcases t with ⟨t⟩
simp only [List.append_toArray, List.set_toArray, List.set_append]
split <;> simp

@[simp] theorem set_append_left {s t : Array α} {i : Nat} {x : α} (h : i < s.size) :
(s ++ t).set i x (by simp; omega) = s.set i x ++ t := by
simp [set_append, h]

@[simp] theorem set_append_right {s t : Array α} {i : Nat} {x : α}
(h' : i < (s ++ t).size) (h : s.size ≤ i) :
(s ++ t).set i x = s ++ t.set (i - s.size) x (by simp at h'; omega) := by
rw [set_append, dif_neg (by omega)]

theorem setIfInBounds_append {s t : Array α} {i : Nat} {x : α} :
(s ++ t).setIfInBounds i x =
if i < s.size then
s.setIfInBounds i x ++ t
else
s ++ t.setIfInBounds (i - s.size) x := by
rcases s with ⟨s⟩
rcases t with ⟨t⟩
simp only [List.append_toArray, List.setIfInBounds_toArray, List.set_append]
split <;> simp

@[simp] theorem setIfInBounds_append_left {s t : Array α} {i : Nat} {x : α} (h : i < s.size) :
(s ++ t).setIfInBounds i x = s.setIfInBounds i x ++ t := by
simp [setIfInBounds_append, h]

@[simp] theorem setIfInBounds_append_right {s t : Array α} {i : Nat} {x : α} (h : s.size ≤ i) :
(s ++ t).setIfInBounds i x = s ++ t.setIfInBounds (i - s.size) x := by
rw [setIfInBounds_append, if_neg (by omega)]

theorem filterMap_eq_append_iff {f : α → Option β} :
filterMap f l = L₁ ++ L₂ ↔ ∃ l₁ l₂, l = l₁ ++ l₂ ∧ filterMap f l₁ = L₁ ∧ filterMap f l₂ = L₂ := by
rcases l with ⟨l⟩
rcases L₁ with ⟨L₁⟩
rcases L₂ with ⟨L₂⟩
simp only [size_toArray, List.filterMap_toArray', List.append_toArray, mk.injEq,
List.filterMap_eq_append_iff, toArray_eq_append_iff]
constructor
· rintro ⟨l₁, l₂, rfl, rfl, rfl⟩
exact ⟨⟨l₁⟩, ⟨l₂⟩, by simp⟩
· rintro ⟨⟨l₁⟩, ⟨l₂⟩, rfl, h₁, h₂⟩
exact ⟨l₁, l₂, by simp_all⟩

theorem append_eq_filterMap_iff {f : α → Option β} :
L₁ ++ L₂ = filterMap f l ↔
∃ l₁ l₂, l = l₁ ++ l₂ ∧ filterMap f l₁ = L₁ ∧ filterMap f l₂ = L₂ := by
rw [eq_comm, filterMap_eq_append_iff]

@[simp] theorem map_append (f : α → β) (l₁ l₂ : Array α) :
map f (l₁ ++ l₂) = map f l₁ ++ map f l₂ := by
cases l₁
cases l₂
simp

theorem map_eq_append_iff {f : α → β} :
map f l = L₁ ++ L₂ ↔ ∃ l₁ l₂, l = l₁ ++ l₂ ∧ map f l₁ = L₁ ∧ map f l₂ = L₂ := by
rw [← filterMap_eq_map, filterMap_eq_append_iff]

theorem append_eq_map_iff {f : α → β} :
L₁ ++ L₂ = map f l ↔ ∃ l₁ l₂, l = l₁ ++ l₂ ∧ map f l₁ = L₁ ∧ map f l₂ = L₂ := by
rw [eq_comm, map_eq_append_iff]

/-! Content below this point has not yet been aligned with `List`. -/

-- This is a duplicate of `List.toArray_toList`.
-- It's confusing to guess which namespace this theorem should live in,
Expand Down
Loading
Loading