Skip to content

Commit

Permalink
chore: split proof of testBit_mul_two_pow and rtemove useless hypotheses
Browse files Browse the repository at this point in the history
  • Loading branch information
luisacicolini committed Jan 13, 2025
1 parent e7973a4 commit 70d4a45
Showing 1 changed file with 27 additions and 25 deletions.
52 changes: 27 additions & 25 deletions src/Init/Data/Nat/Bitwise/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -115,34 +115,36 @@ theorem testBit_add (x i n : Nat) : testBit x (i + n) = testBit (x / 2 ^ n) i :=
rw [← Nat.add_assoc, testBit_add_one, ih (x / 2),
Nat.pow_succ, Nat.div_div_eq_div_mul, Nat.mul_comm]

theorem testBit_mul_two_pow_le {x i n : Nat} (h : n ≤ i) :
testBit (x * 2 ^ n) i = testBit x (i - n) := by
simp only [testBit, one_and_eq_mod_two, mod_two_bne_zero]
let j := i - n
have hj : (x * 2 ^ n) >>> i = (x * 2 ^ n) >>> (j + n) := by simp only [j]; rw [Nat.sub_add_cancel]; omega
have hj' : x >>> (i - n) = x >>> j := by simp only [j]
rw [hj, hj', ← shiftLeft_eq, Nat.add_comm, shiftRight_add, shiftLeft_shiftRight]

theorem testBit_mul_two_pow_gt {x i n : Nat} (h : i < n) :
testBit (x * 2 ^ n) i = false := by
simp only [testBit, one_and_eq_mod_two, mod_two_bne_zero, beq_eq_false_iff_ne, ne_eq, ← shiftLeft_eq]
let k := n - i
have hk : x <<< n >>> i = x <<< (k + i) >>> i := by simp only [k]; rw [Nat.sub_add_cancel]; omega
rw [hk, Nat.shiftLeft_add, Nat.shiftLeft_shiftRight, shiftLeft_eq]
have hx : 2 * (x * 2 ^ k / 2) = x * 2 ^ k := by
rw [Nat.mul_comm, Nat.div_mul_cancel]
suffices hs : 2 * (x * 2 ^ (k - 1)) = x * 2 ^ k by
exact ⟨_, hs.symm⟩
let j := k - 1
have hj : 2 ^ (k - 1) = 2 ^ j := by simp only [j]
have hj' : 2 ^ k = 2 ^ (j + 1) := by simp only [j]; rw [Nat.sub_add_cancel]; omega
rw [hj, hj', Nat.pow_add, Nat.pow_one, Nat.mul_comm, Nat.mul_assoc]
omega

theorem testBit_mul_two_pow (x i n : Nat) :
testBit (x * 2 ^ n) i = if n ≤ i then testBit x (i - n) else false := by
simp only [testBit, one_and_eq_mod_two, mod_two_bne_zero, Bool.if_false_right]
by_cases hni : n ≤ i
· simp only [hni, decide_true, Bool.true_and]
congr 2
let j := i - n
have hj : (x * 2 ^ n) >>> i = (x * 2 ^ n) >>> (j + n) := by simp only [j]; rw [Nat.sub_add_cancel]; omega
have hj' : x >>> (i - n) = x >>> j := by simp only [j]
rw [hj, hj', ← shiftLeft_eq, Nat.add_comm, shiftRight_add, shiftLeft_shiftRight]
· simp only [hni, decide_false, Bool.false_and, beq_eq_false_iff_ne, ne_eq]
simp only [Nat.not_le] at hni
rw [← shiftLeft_eq]
let k := n - i
have hk : x <<< n >>> i = x <<< (k + i) >>> i := by simp only [k]; rw [Nat.sub_add_cancel]; omega
rw [hk, Nat.shiftLeft_add, Nat.shiftLeft_shiftRight, shiftLeft_eq]
have hk' : 0 < k := by omega
have hx : 2 * (x * 2 ^ k / 2) = x * 2 ^ k := by
rw [Nat.mul_comm, Nat.div_mul_cancel]
suffices hs : 2 * (x * 2 ^ (k - 1)) = x * 2 ^ k by
exact ⟨_, hs.symm⟩
let j := k - 1
have hj : 2 ^ (k - 1) = 2 ^ j := by simp only [j]
have hj' : 2 ^ k = 2 ^ (j + 1) := by simp only [j]; rw [Nat.sub_add_cancel]; omega
rw [hj, hj']
simp only [Nat.pow_add, Nat.pow_one, j, k]
rw [Nat.mul_comm, Nat.mul_assoc]
omega
· simp [hni, testBit_mul_two_pow_le hni]
· have : i < n := by omega
simp [hni, testBit_mul_two_pow_gt this]

theorem testBit_div_two (x i : Nat) : testBit (x / 2) i = testBit x (i + 1) := by
simp
Expand Down

0 comments on commit 70d4a45

Please sign in to comment.