Skip to content

Commit

Permalink
move notation
Browse files Browse the repository at this point in the history
  • Loading branch information
riccardobrasca committed Nov 30, 2023
1 parent bc5b567 commit 95429ba
Show file tree
Hide file tree
Showing 2 changed files with 15 additions and 5 deletions.
3 changes: 0 additions & 3 deletions FltRegular/NumberTheory/Hilbert92.lean
Original file line number Diff line number Diff line change
Expand Up @@ -91,9 +91,6 @@ lemma Subgroup.index_mono {G : Type*} [Group G] {H₁ H₂ : Subgroup G} (h : H
rw [←mul_one H₂.index, ←relindex_mul_index h.le, mul_comm, Ne, eq_comm]
simp [-one_mul, -Nat.one_mul, hn, h.not_le]

noncomputable
abbrev σA : A := MonoidAlgebra.of ℤ H σ

lemma isPrimitiveroot : IsPrimitiveRoot (σA p σ) p := sorry

instance : IsDomain A := sorry
Expand Down
17 changes: 15 additions & 2 deletions FltRegular/NumberTheory/SystemOfUnits.lean
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,9 @@ variable
local notation3 "A" =>
MonoidAlgebra ℤ H ⧸ Ideal.span {∑ i in Finset.range p, (MonoidAlgebra.of ℤ H σ) ^ i}

noncomputable
abbrev σA : A := MonoidAlgebra.of ℤ H σ

structure systemOfUnits (r : ℕ) [Module A G]
where
units : Fin r → G
Expand All @@ -43,9 +46,19 @@ lemma bezout [Module A G] {a : A} (ha : a ≠ 0) : ∃ (f : A) (n : ℤ),
lemma existence0 [Module A G] : Nonempty (systemOfUnits p G σ 0) := by
exact ⟨⟨fun _ => 0, linearIndependent_empty_type⟩⟩

lemma span_eq_span [Module A G] {R : ℕ} (f : Fin R → G) :
lemma spanA_eq_spanA [Module A G] {R : ℕ} (f : Fin R → G) :
(Submodule.span A (Set.range f) : Set G) =
Submodule.span A (Set.range (fun (e : Fin R × (Fin (p - 1))) ↦ f e.1)) := by
refine le_antisymm (Submodule.span_mono (fun x hx ↦ ?_)) ?_
· sorry
· sorry

lemma spanA_eq_spanZ [Module A G] {R : ℕ} (f : Fin R → G) :
(Submodule.span A (Set.range f) : Set G) =
Submodule.span ℤ (Set.range (fun (e : Fin R × (Fin (p - 1))) ↦ f e.1)) := sorry
Submodule.span ℤ (Set.range (fun (e : Fin R × (Fin (p - 1))) ↦ f e.1)) := by
let S := Set.range (fun (e : Fin R × (Fin (p - 1))) ↦ f e.1)
have := Submodule.span_le_restrictScalars ℤ A S
sorry

lemma ex_not_mem [Module A G] {R : ℕ} (S : systemOfUnits p G σ R) (hR : R < r) :
∃ g, ∀ (k : ℤ), ¬(k • g ∈ Submodule.span A (Set.range S.units)) := by
Expand Down

0 comments on commit 95429ba

Please sign in to comment.