Skip to content

Commit

Permalink
add f
Browse files Browse the repository at this point in the history
  • Loading branch information
riccardobrasca committed Nov 27, 2023
1 parent dbe341d commit 369fae2
Showing 1 changed file with 23 additions and 3 deletions.
26 changes: 23 additions & 3 deletions FltRegular/NumberTheory/Hilbert90.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ import FltRegular.NumberTheory.AuxLemmas
import FltRegular.NumberTheory.GaloisPrime

open scoped NumberField nonZeroDivisors
open FiniteDimensional
open FiniteDimensional Finset BigOperators

variable {K L : Type*} [Field K] [Field L] [NumberField K] [Algebra K L] [FiniteDimensional K L]
variable (σ : L ≃ₐ[K] L) (hσ : ∀ x, x ∈ Subgroup.zpowers σ)
Expand All @@ -21,9 +21,29 @@ lemma Hilbert90 (σ : L ≃ₐ[K] L) (hσ : ∀ x, x ∈ Subgroup.zpowers σ)
let E := AlgebraicClosure K
have := Algebra.norm_eq_prod_embeddings K E η
rw [hη] at this
let f : (L ≃ₐ[K] L) → Lˣ := sorry
let φ := (finEquivZpowers _ (isOfFinOrder_of_finite σ)).symm
haveI nezero : NeZero (orderOf σ) :=
fun hzero ↦ orderOf_eq_zero_iff.1 hzero (isOfFinOrder_of_finite σ)⟩
have hφ : φ ⟨σ, hσ σ⟩ = 1 := sorry
let f : (L ≃ₐ[K] L) → Lˣ := fun τ ↦ ∏ i in range (φ ⟨τ, hσ τ⟩), Units.map (σ ^ i) ηu
have hf : ∀ (g h : (L ≃ₐ[K] L)), f (g * h) = g (f h) * f g := sorry
have hfσ : f σ = ηu := sorry
have hfσ : f σ = ηu := by
simp_rw [hφ]
by_cases hone : orderOf σ = 1
· simp at hone
simp [hone]
sorry
have : 1 % orderOf σ = 1 := by
suffices : (orderOf σ).pred.pred + 2 = orderOf σ
· rw [← this]
exact Nat.one_mod _
rw [← Nat.succ_eq_add_one, ← Nat.succ_eq_add_one, Nat.succ_pred, Nat.succ_pred nezero.1]
intro h
rw [show 0 = Nat.pred 1 by rfl] at h
apply hone
exact Nat.pred_inj (Nat.pos_of_ne_zero nezero.1) zero_lt_one h
simp [this]
rfl
obtain ⟨ε, hε⟩ := hilbert90 f hf
use ε
specialize hε σ
Expand Down

0 comments on commit 369fae2

Please sign in to comment.