Skip to content

Commit

Permalink
Get basic streaming to work for run (#683)
Browse files Browse the repository at this point in the history
Get basic streaming to work for run




Building upon what Ryan investigated in
#651, all the frontend
changes are from him I just rebased onto his PR


This is a bit tricky becasue we have to support:

1. streaming models --> use a queue iterator for passing the output text
2. non-streaming models --> still yield, just don't use a queue iterator
and wait for run command to finish


General flow:
1. Parse prompts from client
2. Define stream callback with queue iterator
3. Start thread to run aiconfig without blocking main thread from
accessing queue iterator
4. Create a copy of the original AIConfig so we can write partially
streamed outputs, yield and display it without risk of race conditions
5. Wait for queue iterator to start containing data, or wait until max
timeout (becuase model may not support streaming)
5. Iterate through queue iterator, saving output to display config,
yield display config
6. Once output is complete, wait for the original `config.run()` thread
and display the output from that

Open questions/TODOs
1. [solved - use `while output_text_queue.isEmpty() and t.is_alive()`]
~~How can we check whether model supports streaming or not? Right now we
just default to having a max timeout of 5s, but long-term would be
better for people to explicitly mark this as a boolean flag in their
model parser class~~
2. I need update the output format for streaming. I thought it was fine
but guess not, will verify again. A bit annoying but also not a crazy
blocker for now
3. Client needs to also support streaming, but that's fine Ryan can get
unblocked with this diff now
4. Pretty complex, but streaming will break for `run_with_dependencies`.
I've got a proposal to fix forward in
https://github.com/lastmile-ai/gradio-workbook/pull/64 and really want
people to take a look and give feedback

## Test plan
```bash
alias aiconfig="python -m 'aiconfig.scripts.aiconfig_cli'"
aiconfig edit --aiconfig-path="/Users/rossdancraig/Projects/aiconfig/cookbooks/Getting-Started/travel.aiconfig.json" --server-port=8080 --server-mode=debug_servers

# Now run this from another terminal
curl http://localhost:8080/api/run -d '{"prompt_name":"get_activities"}' -X POST -H 'Content-Type: application/json'
```

I also added this line to print output:
```
print(accumulated_output_text)
```
Streaming


https://github.com/lastmile-ai/aiconfig/assets/151060367/d8930ea6-3143-49a3-89c6-4a2668c2e9e1

Non-streaming (same as before)


https://github.com/lastmile-ai/aiconfig/assets/151060367/5aae7c7f-c273-4be7-bcb9-e96199a04076
  • Loading branch information
rossdanlm authored Jan 6, 2024
2 parents a50fa41 + 9efb3f4 commit e3590eb
Show file tree
Hide file tree
Showing 5 changed files with 245 additions and 20 deletions.
2 changes: 2 additions & 0 deletions python/src/aiconfig/editor/client/package.json
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,7 @@
"aiconfig": "../../../../../typescript",
"lodash": "^4.17.21",
"node-fetch": "^3.3.2",
"oboe": "^2.1.5",
"react": "^18",
"react-dom": "^18",
"react-markdown": "^8.0.6",
Expand All @@ -49,6 +50,7 @@
"devDependencies": {
"@types/lodash": "^4.14.202",
"@types/node": "^20",
"@types/oboe": "^2.1.4",
"@types/react": "^18",
"@types/react-dom": "^18",
"@typescript-eslint/eslint-plugin": "^6.16.0",
Expand Down
37 changes: 37 additions & 0 deletions python/src/aiconfig/editor/client/src/utils/oboeHelpers.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
import oboe, { Options } from "oboe";

// Promisify Oboe - similar to this: https://stackoverflow.com/questions/54855494/rewrite-fetch-call-to-oboe-for-json-streams-with-typescript
// Except it allows to use .node('*', fn) & only resolves on done
// See https://medium.com/@amberlamps84/oboe-js-mongodb-express-node-js-and-the-beauty-of-streams-4a90fad5414 on using oboe vs raw streams
// (multiple chunks can be sent in single response & we only want valid json ones)
export async function streamingApi<T>(
headers: Options,
on: string = "*",
fn: (data: any) => void,
on2?: string,
fn2?: (data: any) => void,
on3?: string,
fn3?: (data: any) => void
): Promise<T> {
return new Promise((resolve, reject) => {
if (fn2 && on2 && fn3 && on3) {
oboe(headers)
.node(on, fn)
.node(on2, fn2)
.node(on3, fn3)
.done((data) => resolve(data))
.fail((err) => reject(err.jsonBody));
} else if (fn2 && on2) {
oboe(headers)
.node(on, fn)
.node(on2, fn2)
.done((data) => resolve(data))
.fail((err) => reject(err.jsonBody));
} else {
oboe(headers)
.node(on, fn)
.done((data) => resolve(data))
.fail((err) => reject(err.jsonBody));
}
});
}
19 changes: 19 additions & 0 deletions python/src/aiconfig/editor/client/yarn.lock
Original file line number Diff line number Diff line change
Expand Up @@ -2539,6 +2539,13 @@
dependencies:
undici-types "~5.26.4"

"@types/oboe@^2.1.4":
version "2.1.4"
resolved "https://registry.yarnpkg.com/@types/oboe/-/oboe-2.1.4.tgz#d92c4636d0b7737803e4361e10e8dad488f39634"
integrity sha512-bXt4BXSQy0N/buSIak1o0TjYAk2SAeK1aZV9xKcb+xVGWYP8NcMOFy2T7Um3kIvEcQJzrdgJ8R6fpbRcp/LEww==
dependencies:
"@types/node" "*"

"@types/parse-json@^4.0.0":
version "4.0.2"
resolved "https://registry.yarnpkg.com/@types/parse-json/-/parse-json-4.0.2.tgz#5950e50960793055845e956c427fc2b0d70c5239"
Expand Down Expand Up @@ -6083,6 +6090,11 @@ http-errors@~1.6.2:
setprototypeof "1.1.0"
statuses ">= 1.4.0 < 2"

http-https@^1.0.0:
version "1.0.0"
resolved "https://registry.yarnpkg.com/http-https/-/http-https-1.0.0.tgz#2f908dd5f1db4068c058cd6e6d4ce392c913389b"
integrity sha512-o0PWwVCSp3O0wS6FvNr6xfBCHgt0m1tvPLFOCc2iFDKTRAXhB7m8klDf7ErowFH8POa6dVdGatKU5I1YYwzUyg==

http-parser-js@>=0.5.1:
version "0.5.8"
resolved "https://registry.yarnpkg.com/http-parser-js/-/http-parser-js-0.5.8.tgz#af23090d9ac4e24573de6f6aecc9d84a48bf20e3"
Expand Down Expand Up @@ -8524,6 +8536,13 @@ object.values@^1.1.0, object.values@^1.1.6, object.values@^1.1.7:
define-properties "^1.2.0"
es-abstract "^1.22.1"

oboe@^2.1.5:
version "2.1.5"
resolved "https://registry.yarnpkg.com/oboe/-/oboe-2.1.5.tgz#5554284c543a2266d7a38f17e073821fbde393cd"
integrity sha512-zRFWiF+FoicxEs3jNI/WYUrVEgA7DeET/InK0XQuudGHRg8iIob3cNPrJTKaz4004uaA9Pbe+Dwa8iluhjLZWA==
dependencies:
http-https "^1.0.0"

obuf@^1.0.0, obuf@^1.1.2:
version "1.1.2"
resolved "https://registry.yarnpkg.com/obuf/-/obuf-1.1.2.tgz#09bea3343d41859ebd446292d11c9d4db619084e"
Expand Down
44 changes: 44 additions & 0 deletions python/src/aiconfig/editor/server/queue_iterator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
"""Queue iterator for streaming. Can only process strings for now
but in future will try to make it generic"""
# import asyncio
from queue import Queue

# from typing import Generic, TypeVar

# # TODO: Add generic typing for queue items
# # (couldn't get sentinel value to work with generics)
# T = TypeVar('T')
STOP_STREAMING_SIGNAL = object() # sentinel value to indicate end of stream


class QueueIterator:
"""In order to support text streaming, we need to store
the output in a queue and iterate over those values. A lot of this was
inspired by HuggingFace's TextIteratorStreamer object:
I know I can just use a queue directly in the callsite with
`iter(queue.get, None)`, but having a class makes it easier to manage
and abstracts it a bit more.
"""

def __init__(self):
self.q = Queue()
self.stop_signal = STOP_STREAMING_SIGNAL
self.timeout = None

def __iter__(self):
return self

def __next__(self):
value = self.q.get(block=True, timeout=self.timeout)
if value == self.stop_signal:
raise StopIteration()
return value

def put(self, text: str, stream_end: bool = False):
self.q.put(text, timeout=self.timeout)
if stream_end:
self.q.put(self.stop_signal, timeout=self.timeout)

def isEmpty(self) -> bool:
return self.q.empty()
163 changes: 143 additions & 20 deletions python/src/aiconfig/editor/server/server.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,16 @@
import asyncio
import copy
import json
import logging
import threading
import time
import webbrowser
from typing import Any, Dict, Type, Union

import lastmile_utils.lib.core.api as core_utils
import result
from aiconfig.Config import AIConfigRuntime
from aiconfig.editor.server.queue_iterator import STOP_STREAMING_SIGNAL, QueueIterator
from aiconfig.editor.server.server_utils import (
EditServerConfig,
FlaskResponse,
Expand All @@ -26,11 +32,11 @@
)
from aiconfig.model_parser import InferenceOptions
from aiconfig.registry import ModelParserRegistry
from flask import Flask, request
from flask import Flask, Response, request, stream_with_context
from flask_cors import CORS
from result import Err, Ok, Result

from aiconfig.schema import Prompt
from aiconfig.schema import ExecuteResult, Output, Prompt

logging.getLogger("werkzeug").disabled = True

Expand Down Expand Up @@ -173,35 +179,152 @@ def create() -> FlaskResponse:


@app.route("/api/run", methods=["POST"])
async def run() -> FlaskResponse:
def run() -> FlaskResponse:
EXCLUDE_OPTIONS = {
"prompt_index": True,
"file_path": True,
"callback_manager": True,
}
state = get_server_state(app)
aiconfig = state.aiconfig
request_json = request.get_json()

prompt_name: Union[str, None] = request_json.get("prompt_name")
if prompt_name is None:
return HttpResponseWithAIConfig(
message="No prompt name provided, cannot execute `run` command",
code=400,
aiconfig=None,
).to_flask_format()

# TODO (rossdanlm): Refactor aiconfig.run() to not take in `params`
# as a function arg since we can now just call
# aiconfig.get_parameters(prompt_name) directly inside of run. See:
# https://github.com/lastmile-ai/aiconfig/issues/671
params = request_json.get("params", aiconfig.get_parameters(prompt_name)) # type: ignore
stream = request_json.get("stream", False) # TODO: set this automatically to True after client supports stream output

# Define stream callback and queue object for streaming results
output_text_queue = QueueIterator()

def update_output_queue(data, _accumulated_data, _index) -> None:
should_end_stream = data == STOP_STREAMING_SIGNAL
output_text_queue.put(data, should_end_stream)

inference_options = InferenceOptions(
stream=stream,
stream_callback=update_output_queue,
)

def generate():
# Use multi-threading so that we don't block run command from
# displaying the streamed output (if streaming is supported)
def run_async_config_in_thread():
asyncio.run(
aiconfig.run(
prompt_name=prompt_name,
params=params,
run_with_dependencies=False,
options=inference_options,
)
)
output_text_queue.put(STOP_STREAMING_SIGNAL)

t = threading.Thread(target=run_async_config_in_thread)
t.start()

# Create a deep copy of the state aiconfig so we can yield an AIConfig
# with streaming partial outputs in the meantime. This probably isn't
# necessary, but just getting unblocked for now
displaying_config = copy.deepcopy(aiconfig)

# If model supports streaming, need to wait until streamer has at
# least 1 item to display. If model does not support streaming,
# need to wait until the aiconfig.run() thread is complete
SLEEP_DELAY_SECONDS = 0.1
wait_time_in_seconds = 0.0
while output_text_queue.isEmpty() and t.is_alive():
# Yea I know time.sleep() isn't super accurate, but it's fine,
# we can fix later
time.sleep(0.1)
wait_time_in_seconds += SLEEP_DELAY_SECONDS
print(f"Output queue is currently empty. Waiting for {wait_time_in_seconds:.1f}s...")

# Yield in flask is weird and you either need to send responses as a
# string, or artificially wrap them around "[" and "]"
# yield "["
if not output_text_queue.isEmpty():
accumulated_output_text = ""
for text in output_text_queue:
if isinstance(text, str):
accumulated_output_text += text
elif isinstance(text, dict) and "content" in text:
# TODO: Fix streaming output format so that it returns text
accumulated_output_text += text["content"]
elif isinstance(text, dict) and "generated_text" in text:
# TODO: Fix streaming output format so that it returns text
accumulated_output_text += text["generated_text"]

accumulated_output: Output = ExecuteResult(
**{
"output_type": "execute_result",
"data": accumulated_output_text,
# Assume streaming only supports single output
# I think this actually may be wrong for PaLM or OpenAI
# TODO: Need to sync with Ankush but can fix forward
"execution_count": 0,
"metadata": {},
}
)

displaying_config.add_output(prompt_name, accumulated_output, overwrite=True)
aiconfig_json = displaying_config.model_dump(exclude=EXCLUDE_OPTIONS)
yield "["
yield json.dumps({"aiconfig": aiconfig_json})
yield "]"

# Ensure that the run process is complete to yield final output
t.join()
aiconfig_json = aiconfig.model_dump(exclude=EXCLUDE_OPTIONS)
yield "["
yield json.dumps({"aiconfig": aiconfig_json})
yield "]"

try:
prompt_name: Union[str, None] = request_json.get("prompt_name")
if prompt_name is None:
return HttpResponseWithAIConfig(
message="No prompt name provided, cannot execute `run` command",
code=400,
aiconfig=None,
).to_flask_format()

# TODO (rossdanlm): Refactor aiconfig.run() to not take in `params`
# as a function arg since we can now just call
# aiconfig.get_parameters(prompt_name) directly inside of run. See:
# https://github.com/lastmile-ai/aiconfig/issues/671
params = request_json.get("params", aiconfig.get_parameters(prompt_name)) # type: ignore
stream = request_json.get("stream", False)
options = InferenceOptions(stream=stream)
run_output = await aiconfig.run(prompt_name, params, options) # type: ignore
LOGGER.debug(f"run_output: {run_output}")
if stream:
LOGGER.info(f"Running `aiconfig.run()` command with request: {request_json}")
# Streaming based on
# https://stackoverflow.com/questions/73275517/flask-not-streaming-json-response
return Response(
stream_with_context(generate()),
status=200,
content_type="application/json",
)

# Run without streaming
inference_options = InferenceOptions(stream=stream)
def run_async_config_in_thread():
asyncio.run(
aiconfig.run(
prompt_name=prompt_name,
params=params,
run_with_dependencies=False,
options=inference_options,
)
)
output_text_queue.put(STOP_STREAMING_SIGNAL)

t = threading.Thread(target=run_async_config_in_thread)
t.start()
LOGGER.info(f"Running `aiconfig.run()` command with request: {request_json}")
t.join()
return HttpResponseWithAIConfig(
#
message="Ran prompt",
code=200,
aiconfig=aiconfig,
).to_flask_format()

except Exception as e:
return HttpResponseWithAIConfig(
#
Expand Down

0 comments on commit e3590eb

Please sign in to comment.