Skip to content

Commit

Permalink
started to share with others
Browse files Browse the repository at this point in the history
  • Loading branch information
lasiadhi committed Jan 31, 2017
0 parents commit c281a98
Show file tree
Hide file tree
Showing 10 changed files with 2,058 additions and 0 deletions.
3 changes: 3 additions & 0 deletions Chapter2/.Rapp.history
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
load("/Users/lasiadhi/Dropbox-2/Dropbox/Statistical_Learning/Chapter2/ESL.mixture.rda")
ESL.mixture
load("/Users/lasiadhi/Dropbox-2/Dropbox/Statistical_Learning/Chapter2/mixture.rda")
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 0
}
141 changes: 141 additions & 0 deletions Chapter2/.ipynb_checkpoints/Fig_2_2_KNN-checkpoint.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"ename": "AttributeError",
"evalue": "'DataFrame' object has no attribute 'ravel'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-8-90b4bbfc116b>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 33\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 34\u001b[0m \u001b[0mknn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mneighbors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mKNeighborsClassifier\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn_neighbors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 35\u001b[0;31m \u001b[0mknn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mravel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 36\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 37\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m//anaconda/lib/python3.5/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 2742\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_info_axis\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2743\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2744\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2745\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2746\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__setattr__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mAttributeError\u001b[0m: 'DataFrame' object has no attribute 'ravel'"
]
}
],
"source": [
"import rpy2.robjects as robjects\n",
"import pandas.rpy.common as com\n",
"import pandas as pd\n",
"from rpy2.robjects import pandas2ri\n",
"%matplotlib notebook\n",
"import matplotlib.pyplot as plt # for scatter plot\n",
"from ggplot import *\n",
"from sklearn import neighbors\n",
"pandas2ri.activate()\n",
"\n",
"## load .RData and converts to pd.DataFrame\n",
"robj = robjects.r.load(\"/Users/lasiadhi/Dropbox-2/Dropbox/Statistical_Learning/Chapter2/ESL.mixture.rda\")\n",
"#myRData = com.load_data(robj)\n",
"\n",
"for sets in robj:\n",
" myRData = com.load_data(sets)\n",
"\n",
"# load each table to seperate dataframes\n",
"marginal= pd.DataFrame(myRData['marginal'])\n",
"means = pd.DataFrame(myRData['means'])\n",
"px1 = pd.DataFrame(myRData['px1'])\n",
"px2 = pd.DataFrame(myRData['px2'])\n",
"xnew = pd.DataFrame(myRData['xnew'])\n",
"x = pd.DataFrame(myRData['x'])\n",
"x.columns = ['x1', 'x2']\n",
"x.index = x.index - 1\n",
"\n",
"y = pd.DataFrame(myRData['y'])\n",
"y.columns = ['y']\n",
"\n",
"mydata = x.join(y)\n",
"\n",
"#KNN\n",
"knn = neighbors.KNeighborsClassifier(n_neighbors=5)\n",
"knn.fit(x, y) \n",
"\n",
"# Plot the decision boundary. For that, we will asign a color to each\n",
"# point in the mesh [x_min, m_max]x[y_min, y_max].\n",
"h = 0.05 #step size in the mesh\n",
"x_min, x_max = x['x1'].min() - .5, x['x1'].max() + .5\n",
"y_min, y_max = x['x2'].min() - .5, x['x2'].max() + .5\n",
"xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))\n",
"Z = knn.predict(np.c_[xx.ravel(), yy.ravel()])\n",
"\n",
"# Put the result into a color plot\n",
"Z = Z.reshape(xx.shape)\n",
"plt.figure(1, figsize=(4, 3))\n",
"plt.set_cmap(plt.cm.Paired)\n",
"plt.pcolormesh(xx, yy, Z)\n",
"\n",
"# Plot also the training points\n",
"plt.figure(figsize=(9,11)) # initialize figure\n",
"use_colours = {0: \"blue\", 1: \"orange\"}\n",
"plt.scatter(mydata['x1'],mydata['x2'], c=[use_colours[i] for i in y['y']], s=40)\n",
"plt.xlabel(\"X1\")\n",
"plt.ylabel(\"X2\")\n",
"plt.title(\"Fig. 2.1: A classification example in 2D (linear regression)\")\n",
"#pl.scatter(x['x1'], x['x2'],c=y )\n",
"#pl.xlabel('Sepal length')\n",
"#pl.ylabel('Sepal width')\n",
"\n",
"plt.xlim(xx.min(), xx.max())\n",
"plt.ylim(yy.min(), yy.max())\n",
"plt.xticks(())\n",
"plt.yticks(())\n",
"\n",
"plt.show()\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"-2.5208196765959814"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x['x1'].min()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
6 changes: 6 additions & 0 deletions Chapter2/.ipynb_checkpoints/test-checkpoint.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 0
}
Binary file added Chapter2/ESL.mixture.rda
Binary file not shown.
Loading

0 comments on commit c281a98

Please sign in to comment.