Skip to content

Commit

Permalink
enable multiple eval datasets (huggingface#1052)
Browse files Browse the repository at this point in the history
* enable multiple eval datasets

* added test

* try to avoid infinite computation

* make sure eval set is not infinite

* downsizing the test
  • Loading branch information
peter-sk authored and Andrew Lapp committed May 10, 2024
1 parent 7c8b4c0 commit a43912d
Show file tree
Hide file tree
Showing 2 changed files with 46 additions and 10 deletions.
31 changes: 31 additions & 0 deletions tests/test_sft_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -421,6 +421,37 @@ def test_sft_trainer_with_model(self):

self.assertTrue("model.safetensors" in os.listdir(tmp_dir + "/checkpoint-1"))

def test_sft_trainer_with_multiple_eval_datasets(self):
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = TrainingArguments(
output_dir=tmp_dir,
dataloader_drop_last=True,
evaluation_strategy="steps",
max_steps=1,
eval_steps=1,
save_steps=1,
per_device_train_batch_size=2,
)

trainer = SFTTrainer(
model=self.model_id,
args=training_args,
train_dataset=self.train_dataset,
eval_dataset={
"data1": self.eval_dataset,
"data2": self.eval_dataset,
},
packing=True,
)

trainer.train()

self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
self.assertIsNotNone(trainer.state.log_history[0]["eval_data1_loss"])
self.assertIsNotNone(trainer.state.log_history[1]["eval_data2_loss"])

self.assertTrue("model.safetensors" in os.listdir(tmp_dir + "/checkpoint-1"))

def test_data_collator_completion_lm(self):
response_template = "### Response:\n"
data_collator = DataCollatorForCompletionOnlyLM(response_template, tokenizer=self.tokenizer, mlm=False)
Expand Down
25 changes: 15 additions & 10 deletions trl/trainer/sft_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -253,16 +253,21 @@ def make_inputs_require_grad(module, input, output):
chars_per_token,
)
if eval_dataset is not None:
eval_dataset = self._prepare_dataset(
eval_dataset,
tokenizer,
packing,
dataset_text_field,
max_seq_length,
formatting_func,
num_of_sequences,
chars_per_token,
)
_multiple = isinstance(eval_dataset, dict)
_eval_datasets = eval_dataset if _multiple else {"singleton": eval_dataset}
for _eval_dataset_name, _eval_dataset in _eval_datasets.items():
_eval_datasets[_eval_dataset_name] = self._prepare_dataset(
_eval_dataset,
tokenizer,
packing,
dataset_text_field,
max_seq_length,
formatting_func,
num_of_sequences,
chars_per_token,
)
if not _multiple:
eval_dataset = _eval_datasets["singleton"]

if tokenizer.padding_side is not None and tokenizer.padding_side != "right":
warnings.warn(
Expand Down

0 comments on commit a43912d

Please sign in to comment.