Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

examples: update clients #768

Merged
merged 1 commit into from
Sep 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
62 changes: 9 additions & 53 deletions examples/configurable_chain/client.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -23,14 +23,7 @@
"tags": []
},
"outputs": [],
"source": [
"import requests\n",
"\n",
"inputs = {\"input\": {\"topic\": \"sports\"}}\n",
"response = requests.post(\"http://localhost:8000/configurable_temp/invoke\", json=inputs)\n",
"\n",
"response.json()"
]
"source": ["import requests\n\ninputs = {\"input\": {\"topic\": \"sports\"}}\nresponse = requests.post(\"http://localhost:8000/configurable_temp/invoke\", json=inputs)\n\nresponse.json()"]
},
{
"cell_type": "markdown",
Expand All @@ -46,11 +39,7 @@
"tags": []
},
"outputs": [],
"source": [
"from langserve import RemoteRunnable\n",
"\n",
"remote_runnable = RemoteRunnable(\"http://localhost:8000/configurable_temp\")"
]
"source": ["from langserve import RemoteRunnable\n\nremote_runnable = RemoteRunnable(\"http://localhost:8000/configurable_temp\")"]
},
{
"cell_type": "markdown",
Expand All @@ -66,9 +55,7 @@
"tags": []
},
"outputs": [],
"source": [
"response = await remote_runnable.ainvoke({\"topic\": \"sports\"})"
]
"source": ["response = await remote_runnable.ainvoke({\"topic\": \"sports\"})"]
},
{
"cell_type": "markdown",
Expand All @@ -84,11 +71,7 @@
"tags": []
},
"outputs": [],
"source": [
"from langchain.schema.runnable.config import RunnableConfig\n",
"\n",
"remote_runnable.batch([{\"topic\": \"sports\"}, {\"topic\": \"cars\"}])"
]
"source": ["from langchain_core.runnables import RunnableConfig\n\nremote_runnable.batch([{\"topic\": \"sports\"}, {\"topic\": \"cars\"}])"]
},
{
"cell_type": "markdown",
Expand All @@ -104,10 +87,7 @@
"tags": []
},
"outputs": [],
"source": [
"async for chunk in remote_runnable.astream({\"topic\": \"bears, but a bit verbose\"}):\n",
" print(chunk, end=\"\", flush=True)"
]
"source": ["async for chunk in remote_runnable.astream({\"topic\": \"bears, but a bit verbose\"}):\n print(chunk, end=\"\", flush=True)"]
},
{
"cell_type": "markdown",
Expand Down Expand Up @@ -157,14 +137,7 @@
"tags": []
},
"outputs": [],
"source": [
"await remote_runnable.ainvoke(\n",
" {\"topic\": \"sports\"},\n",
" config={\n",
" \"configurable\": {\"prompt\": \"how to say {topic} in french\", \"llm\": \"low_temp\"}\n",
" },\n",
")"
]
"source": ["await remote_runnable.ainvoke(\n {\"topic\": \"sports\"},\n config={\n \"configurable\": {\"prompt\": \"how to say {topic} in french\", \"llm\": \"low_temp\"}\n },\n)"]
},
{
"cell_type": "markdown",
Expand Down Expand Up @@ -221,13 +194,7 @@
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# The model will fail with an auth error\n",
"unauthenticated_response = requests.post(\n",
" \"http://localhost:8000/auth_from_header/invoke\", json={\"input\": \"hello\"}\n",
")\n",
"unauthenticated_response.json()"
]
"source": ["# The model will fail with an auth error\nunauthenticated_response = requests.post(\n \"http://localhost:8000/auth_from_header/invoke\", json={\"input\": \"hello\"}\n)\nunauthenticated_response.json()"]
},
{
"cell_type": "markdown",
Expand All @@ -244,25 +211,14 @@
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# The model will succeed as long as the above shell script is run previously\n",
"import os\n",
"\n",
"test_key = os.environ[\"TEST_API_KEY\"]\n",
"authenticated_response = requests.post(\n",
" \"http://localhost:8000/auth_from_header/invoke\",\n",
" json={\"input\": \"hello\"},\n",
" headers={\"x-api-key\": test_key},\n",
")\n",
"authenticated_response.json()"
]
"source": ["# The model will succeed as long as the above shell script is run previously\nimport os\n\ntest_key = os.environ[\"TEST_API_KEY\"]\nauthenticated_response = requests.post(\n \"http://localhost:8000/auth_from_header/invoke\",\n json={\"input\": \"hello\"},\n headers={\"x-api-key\": test_key},\n)\nauthenticated_response.json()"]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
"source": [""]
}
],
"metadata": {
Expand Down
94 changes: 13 additions & 81 deletions examples/llm/client.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -16,9 +16,7 @@
"tags": []
},
"outputs": [],
"source": [
"from langchain.prompts.chat import ChatPromptTemplate"
]
"source": ["from langchain_core.prompts import ChatPromptTemplate"]
},
{
"cell_type": "code",
Expand All @@ -27,12 +25,7 @@
"tags": []
},
"outputs": [],
"source": [
"from langserve import RemoteRunnable\n",
"\n",
"openai_llm = RemoteRunnable(\"http://localhost:8000/openai/\")\n",
"anthropic = RemoteRunnable(\"http://localhost:8000/anthropic/\")"
]
"source": ["from langserve import RemoteRunnable\n\nopenai_llm = RemoteRunnable(\"http://localhost:8000/openai/\")\nanthropic = RemoteRunnable(\"http://localhost:8000/anthropic/\")"]
},
{
"cell_type": "markdown",
Expand All @@ -48,18 +41,7 @@
"tags": []
},
"outputs": [],
"source": [
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a highly educated person who loves to use big words. \"\n",
" + \"You are also concise. Never answer in more than three sentences.\",\n",
" ),\n",
" (\"human\", \"Tell me about your favorite novel\"),\n",
" ]\n",
").format_messages()"
]
"source": ["prompt = ChatPromptTemplate.from_messages(\n [\n (\n \"system\",\n \"You are a highly educated person who loves to use big words. \"\n + \"You are also concise. Never answer in more than three sentences.\",\n ),\n (\"human\", \"Tell me about your favorite novel\"),\n ]\n).format_messages()"]
},
{
"cell_type": "markdown",
Expand All @@ -86,9 +68,7 @@
"output_type": "execute_result"
}
],
"source": [
"anthropic.invoke(prompt)"
]
"source": ["anthropic.invoke(prompt)"]
},
{
"cell_type": "code",
Expand All @@ -97,9 +77,7 @@
"tags": []
},
"outputs": [],
"source": [
"openai_llm.invoke(prompt)"
]
"source": ["openai_llm.invoke(prompt)"]
},
{
"cell_type": "markdown",
Expand All @@ -126,9 +104,7 @@
"output_type": "execute_result"
}
],
"source": [
"await openai_llm.ainvoke(prompt)"
]
"source": ["await openai_llm.ainvoke(prompt)"]
},
{
"cell_type": "code",
Expand All @@ -149,9 +125,7 @@
"output_type": "execute_result"
}
],
"source": [
"anthropic.batch([prompt, prompt])"
]
"source": ["anthropic.batch([prompt, prompt])"]
},
{
"cell_type": "code",
Expand All @@ -172,9 +146,7 @@
"output_type": "execute_result"
}
],
"source": [
"await anthropic.abatch([prompt, prompt])"
]
"source": ["await anthropic.abatch([prompt, prompt])"]
},
{
"cell_type": "markdown",
Expand All @@ -198,10 +170,7 @@
]
}
],
"source": [
"for chunk in anthropic.stream(prompt):\n",
" print(chunk.content, end=\"\", flush=True)"
]
"source": ["for chunk in anthropic.stream(prompt):\n print(chunk.content, end=\"\", flush=True)"]
},
{
"cell_type": "code",
Expand All @@ -218,19 +187,14 @@
]
}
],
"source": [
"async for chunk in anthropic.astream(prompt):\n",
" print(chunk.content, end=\"\", flush=True)"
]
"source": ["async for chunk in anthropic.astream(prompt):\n print(chunk.content, end=\"\", flush=True)"]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"from langchain.schema.runnable import RunnablePassthrough"
]
"source": ["from langchain_core.runnables import RunnablePassthrough"]
},
{
"cell_type": "code",
Expand All @@ -239,37 +203,7 @@
"tags": []
},
"outputs": [],
"source": [
"comedian_chain = (\n",
" ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a comedian that sometimes tells funny jokes and other times you just state facts that are not funny. Please either tell a joke or state fact now but only output one.\",\n",
" ),\n",
" ]\n",
" )\n",
" | openai_llm\n",
")\n",
"\n",
"joke_classifier_chain = (\n",
" ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"Please determine if the joke is funny. Say `funny` if it's funny and `not funny` if not funny. Then repeat the first five words of the joke for reference...\",\n",
" ),\n",
" (\"human\", \"{joke}\"),\n",
" ]\n",
" )\n",
" | anthropic\n",
")\n",
"\n",
"\n",
"chain = {\"joke\": comedian_chain} | RunnablePassthrough.assign(\n",
" classification=joke_classifier_chain\n",
")"
]
"source": ["comedian_chain = (\n ChatPromptTemplate.from_messages(\n [\n (\n \"system\",\n \"You are a comedian that sometimes tells funny jokes and other times you just state facts that are not funny. Please either tell a joke or state fact now but only output one.\",\n ),\n ]\n )\n | openai_llm\n)\n\njoke_classifier_chain = (\n ChatPromptTemplate.from_messages(\n [\n (\n \"system\",\n \"Please determine if the joke is funny. Say `funny` if it's funny and `not funny` if not funny. Then repeat the first five words of the joke for reference...\",\n ),\n (\"human\", \"{joke}\"),\n ]\n )\n | anthropic\n)\n\n\nchain = {\"joke\": comedian_chain} | RunnablePassthrough.assign(\n classification=joke_classifier_chain\n)"]
},
{
"cell_type": "code",
Expand All @@ -290,9 +224,7 @@
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({})"
]
"source": ["chain.invoke({})"]
}
],
"metadata": {
Expand Down
Loading
Loading