-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit cdff00e
Showing
9 changed files
with
319 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
*.pyc | ||
/dist/ | ||
/*.egg-info |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2018 Linxzh | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
include README.rst |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
# -*- coding: utf-8 -*- | ||
|
||
from . import bins | ||
from . import scorecard | ||
from . import utils |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
# -*- coding: UTF-8 -*- | ||
""" | ||
rosaceae.bin | ||
~~~~~~~~~~~~ | ||
This module implements data binning. | ||
""" | ||
|
||
|
||
import numpy as np | ||
import pandas as pd | ||
|
||
|
||
|
||
def bin_var(xarray, border=None): | ||
''' | ||
-xarray : a numpy array | ||
-border : a border list | ||
''' | ||
# 创建8个分区间 | ||
if not border: | ||
des = xarray.describe() | ||
print des | ||
if des['75%'] < 7: | ||
step = (des['75%']-des['25%'])/3 | ||
else: | ||
step = des['std']/2 | ||
step = int(step) | ||
step = np.round(step, 3) | ||
border = [des['50%']+(i-3)*step for i in range(6)] | ||
border = [i for i in border if i >=0] | ||
#print 'old border: %s' % border | ||
if len(border) != 6: | ||
added = [border[-1]+ i*step for i in range(1,6-len(border))] | ||
border.extend(added) | ||
print 'border:%s, step: %s' % (border, step) | ||
else: | ||
print 'border:%s, step: Set' % (border, ) | ||
out = {} | ||
for i, j in enumerate(border): | ||
if i == 0: | ||
k = '-inf,%s' % j | ||
tmp = np.where(np.logical_and(xarray>=0, xarray<j))[0] | ||
else: | ||
k = '%s,%s' % (border[i-1],j) | ||
tmp = np.where(np.logical_and(xarray>=border[i-1], xarray<border[i]))[0] | ||
out[k] = tmp | ||
print i,j, k | ||
out['%s,inf' % j] = np.where(xarray>=border[-1])[0] | ||
|
||
return out | ||
|
||
|
||
# 根据数据的分位值来分箱 | ||
def bin_quantile(xarray, border=None): | ||
if len(xarray.unique()) < 7: | ||
border = xarray.unique().tolist() | ||
border.sort() | ||
else: | ||
border = [np.percentile(xarray, 0.05), | ||
np.percentile(xarray, 0.2), np.percentile(xarray, 0.5), | ||
np.percentile(xarray, 0.8), np.percentile(xarray, 0.95), | ||
] | ||
#print border | ||
|
||
out = {} | ||
for i, j in enumerate(border): | ||
if i == 0: | ||
k = '-inf,%s' % j | ||
tmp = np.where(np.logical_and(xarray>=0, xarray<j))[0] | ||
else: | ||
k = '%s,%s' % (border[i-1],j) | ||
tmp = np.where(np.logical_and(xarray>=border[i-1], xarray<border[i]))[0] | ||
out[k] = tmp | ||
out['%s,inf' % j] = np.where(xarray>=border[-1])[0] | ||
return out | ||
|
||
|
||
|
||
def bin_scatter(xarray, border = None): | ||
''' | ||
''' | ||
out = {} | ||
if not border: | ||
values = list(set(xarray)) | ||
border = sorted(values) | ||
for i in border: | ||
out[i] = np.where(xarray == i)[0] | ||
return out |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
# -*- coding: utf-8 -*- | ||
''' | ||
rosaceae.scorecard | ||
~~~~~~~~~~~~~~~~~~ | ||
This module provides functions for credit risk scorecard. | ||
''' | ||
|
||
from math import log, e | ||
|
||
|
||
def getWOE(c, y): | ||
'''Calculate WOE value. | ||
WOE(weight of evidence) | ||
1 indicates good case, 0 indicates bad case. | ||
Args: | ||
-c : dictionary, result of bin function. | ||
-y : pandas.Series or numpy.array, label. | ||
Returns: | ||
''' | ||
totalgood = np.count_nonzero(y) | ||
totalbad = len(y) - totalgood | ||
|
||
out = {} | ||
|
||
for k in c: | ||
region = y[c[k]] | ||
bad = np.count_nonzero(region) | ||
good = len(region) - bad | ||
#print len(region), good, bad | ||
if bad == 0 or good ==0: | ||
continue | ||
woe = log((float(bad)/b)/(float(good)/g)) | ||
out[k] = woe | ||
return out | ||
|
||
|
||
def get_constant(theta, pdo, basescore): | ||
'''Calculata Shift and Slope | ||
The score of an individual i is given by the formula: | ||
Score(i) = Shift + Slope*(b0 + b1*WOE1(i) + b2*WOE2(i)+ ... +bp*WOEp(i)) | ||
where bj is the coefficient of the j-th variable in the model, | ||
and WOEj(i) is the Weight of Evidence (WOE) value for the | ||
i-th individual corresponding to the j-th model variable. | ||
In short formula: | ||
Score = Shift + Slope*ln(Good/Bad) | ||
Score + PDO = Shift + Slope*ln(2* Good/Bad) | ||
where Slope = PDO / ln(2), Shift = Score - Slope*ln(Good/Bad). | ||
Args: | ||
theta: the ratio of Good/Bad. Let good ratio is p, then bad ratio is | ||
(1-p), theta = p/(1-p). | ||
pdo: Point-to-Double Odds. When the odds is doubled, score will increate pdo. | ||
basescore: When the ratio of Good/Bad is theta, the score is basescore. | ||
''' | ||
slope = pdo/log(2, e) | ||
shift = basescore - B * log(float(theta), e) | ||
return (shift, slope) | ||
|
||
|
||
def getScore(woe_table, xarray): | ||
score = 0 | ||
xarray.fillna(0, inplace=True) | ||
for idx in xarray.index[2:]: | ||
value = xarray[idx] | ||
tmp_woe = woe_table[idx] | ||
for k in tmp_woe: | ||
border = pd.to_numeric(k.split(':')) | ||
#print k, border | ||
if value >= border[0] and value < border[1]: | ||
#print idx, value, border, tmp_woe[k] | ||
score += tmp_woe[k] | ||
break | ||
return score |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
rosaceae.utils | ||
~~~~~~~~~~~~~~ | ||
This module provides utility functions that are used within Rosaceae. | ||
Including visulization and summary functions. | ||
""" | ||
|
||
import seaborn as sns | ||
|
||
from itertools import combinations | ||
|
||
|
||
# 对模型变量进行遍历分析,将结果保存在DataFrame中 | ||
def model_selecter(x_train, x_test, y_train, y_test, start=1, end=None, verbose=False): | ||
result_df = pd.DataFrame(columns=['Var_No', 'Vars', 'train_score', 'test_score','coef', 'inter']) | ||
if not end: | ||
end = x_train.shape[1] | ||
cols = x_train.columns | ||
for n in range(start, end+1): | ||
cols_try = combinations(cols, n) | ||
|
||
if not verbose: | ||
print n | ||
|
||
for t in cols_try: | ||
tmp_train = x_train.loc[:, x_train.columns.isin(t)] | ||
tmp_test = x_test.loc[:, x_test.columns.isin(t)] | ||
clf = LogisticRegression(random_state=0) | ||
clf.fit(tmp_train, y_train) | ||
train_roc_score = roc_auc_score(y_train, clf.decision_function(tmp_train)) | ||
test_roc_score = roc_auc_score(y_test, clf.decision_function(tmp_test)) | ||
if verbose: | ||
print "%s\t%s\t%s\t%s" % (n, ','.join(t), train_roc_score, test_roc_score) | ||
|
||
row = 0 if pd.isna(result_df.index.max()) else result_df.index.max() + 1 | ||
result_df.loc[row] = [n, ','.join(t), train_roc_score, test_roc_score, clf.coef_, clf.intercept_] | ||
|
||
return result_df | ||
|
||
|
||
##################################################################### | ||
# visulization function | ||
##################################################################### | ||
# TODO(l0o0): KS plot is needed. | ||
|
||
def bin_plot(out): | ||
df = pd.DataFrame([(k, len(out[k])) for k in sorted(out.keys(), key=lambda x:float(str(x).split(',')[0]))], columns=['Range', 'Number']) | ||
print df | ||
p = sns.barplot(x='Range', y='Number', data=df) | ||
p.set_xticklabels(p.get_xticklabels(), rotation=30) | ||
return p | ||
|
||
|
||
# 对分箱计算的woe进行绘图 | ||
def woe_plot(fea_woe): | ||
for f in fea_woe: | ||
tmp = fea_woe[f].items() | ||
tmp = sorted(tmp, key=lambda x:pd.to_numeric(str(x[0]).split(',')[0])) | ||
x = [i[0] for i in tmp] | ||
y = [i[1] for i in tmp] | ||
print f | ||
p = sns.barplot(x=x, y=y) | ||
p.set_xticklabels(p.get_xticklabels(), rotation=30) | ||
return p | ||
|
||
|
||
##################################################################### | ||
# summary function | ||
##################################################################### | ||
# TODO: feature importance and IV | ||
|
||
def frequent_table(xarray, label, steps): | ||
cols = ['Bins', 'Percent', 'Cumulative_percent', 'Counts', 'Cumulative_Counts'] | ||
cols.extend(list(set(label))) # column names | ||
fre_df = pd.DataFrame(columns=cols) | ||
|
||
total_length = float(len(xarray)) | ||
sum_length = 0 | ||
|
||
for i,j in enumerate(steps[:-1]): | ||
border = (steps[i], steps[i+1]) | ||
value_idx = (xarray >= border[0]) & (xarray < border[1]) | ||
tmp = xarray[value_idx] | ||
tmp_length = len(tmp) | ||
sum_length += tmp_length | ||
label_counts = label[value_idx].value_counts() | ||
label_counts_dict = dict(zip(label_counts.index, label_counts)) | ||
#print label_counts_dict | ||
row = [str(border), | ||
"%f%%" % (tmp_length/total_length * 100), | ||
"%f%%" % (sum_length/total_length * 100), | ||
tmp_length, | ||
sum_length, | ||
label_counts_dict.get(cols[-2],0), | ||
label_counts_dict.get(cols[-1], 0)] | ||
|
||
fre_df.loc[i] = row | ||
return fre_df |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
from setuptools import setup | ||
|
||
|
||
def readme(): | ||
with open('README.rst') as handle: | ||
return handle.read() | ||
|
||
setup( | ||
name='rosaceae', | ||
version='0.0.1', | ||
description='Python pacakge for credit risk scorecards', | ||
long_description=readme(), | ||
author='l0o0', | ||
author_email='[email protected]', | ||
license='MIT', | ||
keywords=['scorecards', 'woe'], | ||
url='', | ||
install_requires=['numpy', 'pandas', 'seaborn'] | ||
) |