-
Notifications
You must be signed in to change notification settings - Fork 533
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
111 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
#!/usr/bin/env python3 | ||
|
||
import cv2 | ||
import numpy as np | ||
import os | ||
import random | ||
import torch | ||
import torch.onnx | ||
import argparse | ||
|
||
from shutil import copyfile | ||
from src.config import Config | ||
from src.models import EdgeModel, InpaintingModel | ||
|
||
MAX_WIDTH = 600 | ||
MAX_HEIGHT = 512 | ||
|
||
def main(): | ||
"""Exports models as ONNX file | ||
""" | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--path', '--checkpoints', type=str, default='./checkpoints', help='model checkpoints path (default: ./checkpoints)') | ||
parser.add_argument('--model', type=int, choices=[1, 2], help='1: edge model, 2: inpaint model') | ||
|
||
args = parser.parse_args() | ||
config_path = os.path.join(args.path, 'config.yml') | ||
|
||
# create checkpoints path if does't exist | ||
if not os.path.exists(args.path): | ||
os.makedirs(args.path) | ||
|
||
# copy config template if does't exist | ||
if not os.path.exists(config_path): | ||
copyfile('./config.yml.example', config_path) | ||
|
||
# load config file | ||
config = Config(config_path) | ||
|
||
# cuda visble devices | ||
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(str(e) for e in config.GPU) | ||
|
||
# init device | ||
if torch.cuda.is_available(): | ||
config.DEVICE = torch.device("cuda") | ||
torch.backends.cudnn.benchmark = True # cudnn auto-tuner | ||
else: | ||
config.DEVICE = torch.device("cpu") | ||
|
||
# set cv2 running threads to 1 (prevents deadlocks with pytorch dataloader) | ||
cv2.setNumThreads(0) | ||
|
||
# initialize random seed | ||
torch.manual_seed(config.SEED) | ||
torch.cuda.manual_seed_all(config.SEED) | ||
np.random.seed(config.SEED) | ||
random.seed(config.SEED) | ||
|
||
# Model dummy input | ||
dummy_input = ( | ||
torch.randn(1, 1, MAX_HEIGHT, MAX_WIDTH, requires_grad=True).to(config.DEVICE) if args.model == 1 else torch.randn(1, 3, MAX_HEIGHT, MAX_WIDTH, requires_grad=True).to(config.DEVICE), # Image | ||
torch.randn(1, 1, MAX_HEIGHT, MAX_WIDTH, requires_grad=True).to(config.DEVICE), # Masks | ||
torch.randn(1, 1, MAX_HEIGHT, MAX_WIDTH, requires_grad=True).to(config.DEVICE) # Edge | ||
) | ||
|
||
# Edge model | ||
if args.model == 1: | ||
# Create edge model and initialize | ||
edge_model = EdgeModel(config).to(config.DEVICE) | ||
|
||
# Load model | ||
edge_model.load() | ||
|
||
# Eval mode | ||
edge_model.eval() | ||
|
||
# Export as ONNX | ||
torch.onnx.export( | ||
edge_model, | ||
dummy_input, | ||
"edge-model.onnx", | ||
export_params=True, | ||
opset_version=10, | ||
do_constant_folding=True, | ||
input_names = ["InputImage", "Mask"], | ||
output_names = ["OutputImage"], | ||
) | ||
else: # Inpaint model | ||
# Create inpainting model and initialize | ||
inpaint_model = InpaintingModel(config).to(config.DEVICE) | ||
# Load model | ||
inpaint_model.load() | ||
|
||
# Eval mode | ||
inpaint_model.eval() | ||
|
||
# Export as ONNX | ||
torch.onnx.export( | ||
inpaint_model, | ||
dummy_input, | ||
"edge-connect-inpaint.onnx", | ||
export_params=True, | ||
opset_version=10, | ||
do_constant_folding=True, | ||
input_names = ["InputImage", "Mask", "Edges"], | ||
output_names = ["OutputImage"], | ||
) | ||
|
||
if __name__ == "__main__": | ||
main() |