Skip to content

Files

Latest commit

386cf38 · Feb 28, 2023

History

History

ICIP21

Comprehensive Comparisons of Uniform Quantizers for Deep Image Compression

Official implementation of "Comprehensive Comparisons of Uniform Quantizers for Deep Image Compression" in ICIP 2021.

Environment

  • CUDA==10.0
  • CUDNN==7.6.0
  • Python
pip install pipenv
pipenv install

Refer to Pipfile if you download packages manually.

Usage

# train a model
python main.py --verbose --checkpoint_dir checkpoints/l0.01_aun_aun --qua_ent AUN-Q train --lambda 0.01 --qua_dec AUN-Q --train_root /path/to/ImageNet/train/

# evaluate the model
python evaluate.py /path/to/Kodak/images/ --qua_ent AUN-Q --checkpoint_dir checkpoints/l0.01_aun_aun/

You can train other combinations of approximation methods by specifying --qua_ent and --qua_dec.

Please select from {AUN-Q, STE-Q, U-Q, SGA-Q} for each option.

Citation

@inproceedings{tsubotaICIP21,
    title = {Comprehensive Comparisons of Uniform Quantizers for Deep Image Compression},
    author = {Tsubota, Koki and Aizawa, Kiyoharu},
    booktitle = {ICIP},
    year = {2021},
    pages={2089-2093}
}

Note

Our code is based on the example codes in Tensorflow Compression licensed under Apache-2.0 (Copyright 2018 Google LLC).