Official implementation of "Comprehensive Comparisons of Uniform Quantizers for Deep Image Compression" in ICIP 2021.
- CUDA==10.0
- CUDNN==7.6.0
- Python
pip install pipenv
pipenv install
Refer to Pipfile
if you download packages manually.
# train a model
python main.py --verbose --checkpoint_dir checkpoints/l0.01_aun_aun --qua_ent AUN-Q train --lambda 0.01 --qua_dec AUN-Q --train_root /path/to/ImageNet/train/
# evaluate the model
python evaluate.py /path/to/Kodak/images/ --qua_ent AUN-Q --checkpoint_dir checkpoints/l0.01_aun_aun/
You can train other combinations of approximation methods by specifying --qua_ent
and --qua_dec
.
Please select from {AUN-Q, STE-Q, U-Q, SGA-Q}
for each option.
@inproceedings{tsubotaICIP21,
title = {Comprehensive Comparisons of Uniform Quantizers for Deep Image Compression},
author = {Tsubota, Koki and Aizawa, Kiyoharu},
booktitle = {ICIP},
year = {2021},
pages={2089-2093}
}
Our code is based on the example codes in Tensorflow Compression licensed under Apache-2.0 (Copyright 2018 Google LLC).