-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
107 lines (93 loc) · 3.17 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import argparse
from collections import defaultdict
import os
import subprocess
import pandas as pd
def parse_stdout(score_str: str):
score_dict = dict()
# parse standard output
for line in score_str.strip().split("\n"):
name, sc = line.split(": ")
score_dict[name] = float(sc)
return score_dict
def main():
parser = argparse.ArgumentParser()
parser.add_argument("data", help="/path/to/Kodak/images")
parser.add_argument(
"--qua_ent",
choices={"AUN-Q", "STE-Q", "St-Q", "U-Q", "SGA-Q"},
default="AUN-Q",
)
parser.add_argument(
"--lambda",
type=float,
default=0.01,
dest="lmbda",
help="Lambda for rate-distortion tradeoff.",
)
parser.add_argument("--distortion", default="mse", choices={"mse", "msssim"})
parser.add_argument("--checkpoint_dir", default="train")
parser.add_argument("--decode", action="store_true")
parser.add_argument("--out", default="score.csv")
args = parser.parse_args()
fnames = sorted(os.listdir(args.data))
scores_dict = defaultdict(list)
tfci_dir: str = os.path.join(args.checkpoint_dir, "tfci")
decomp_dir: str = os.path.join(args.checkpoint_dir, "decomp")
os.makedirs(tfci_dir, exist_ok=True)
os.makedirs(decomp_dir, exist_ok=True)
for fname in fnames:
# compress
p = subprocess.Popen(
"python main.py --verbose --qua_ent {} --checkpoint_dir {} compress {} {}.tfci".format(
args.qua_ent,
args.checkpoint_dir,
os.path.join(args.data, fname),
os.path.join(tfci_dir, fname),
),
stdout=subprocess.PIPE,
stderr=subprocess.DEVNULL,
shell=True,
)
print(p.args)
output = p.communicate()[0]
p.wait()
# decompress
if args.decode:
p = subprocess.Popen(
"python main.py --qua_ent {} --checkpoint_dir {} decompress {}.tfci {}.tfci.png".format(
args.qua_ent,
args.checkpoint_dir,
os.path.join(tfci_dir, fname),
os.path.join(decomp_dir, fname),
),
stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL,
shell=True,
)
print(p.args)
p.communicate()
p.wait()
score_str: str = str(output, encoding="utf-8", errors="replace")
try:
score_dict = parse_stdout(score_str)
except Exception as e:
print(e)
print(fname, score_str, output)
return
for k, v in score_dict.items():
scores_dict[k].append(v)
df = pd.DataFrame.from_dict(scores_dict)
df.index = fnames
if args.distortion == "mse":
df["Loss"] = (
args.lmbda * df["Mean squared error"] + df["Information content in bpp"]
)
else:
df["Loss"] = (
args.lmbda * (1 - df["Multiscale SSIM"]) + df["Information content in bpp"]
)
df.to_csv(os.path.join(args.checkpoint_dir, args.out))
print(df.mean())
if __name__ == "__main__":
main()