forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
1e2bd62
commit 7bcbf24
Showing
4 changed files
with
106 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
# pylint: skip-file | ||
import sys | ||
sys.path.insert(0, "../mxnet/python") | ||
import mxnet as mx | ||
import logging | ||
from data import ilsvrc12_iterator | ||
|
||
|
||
logger = logging.getLogger() | ||
logger.setLevel(logging.DEBUG) | ||
|
||
def ConvFactory(data, num_filter, kernel, stride=(1,1), pad=(0, 0), name=None, suffix=''): | ||
conv = mx.symbol.Convolution(data=data, workspace=512, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad, name='conv_%s%s' %(name, suffix)) | ||
bn = mx.symbol.BatchNorm(data=conv, name='bn_%s%s' %(name, suffix)) | ||
act = mx.symbol.Activation(data=bn, act_type='relu', name='relu_%s%s' %(name, suffix)) | ||
return act | ||
|
||
def InceptionFactoryA(data, num_1x1, num_3x3red, num_3x3, num_d3x3red, num_d3x3, pool, proj, name): | ||
# 1x1 | ||
c1x1 = ConvFactory(data=data, num_filter=num_1x1, kernel=(1, 1), name=('%s_1x1' % name)) | ||
# 3x3 reduce + 3x3 | ||
c3x3r = ConvFactory(data=data, num_filter=num_3x3red, kernel=(1, 1), name=('%s_3x3' % name), suffix='_reduce') | ||
c3x3 = ConvFactory(data=c3x3r, num_filter=num_3x3, kernel=(3, 3), pad=(1, 1), name=('%s_3x3' % name)) | ||
# double 3x3 reduce + double 3x3 | ||
cd3x3r = ConvFactory(data=data, num_filter=num_d3x3red, kernel=(1, 1), name=('%s_double_3x3' % name), suffix='_reduce') | ||
cd3x3 = ConvFactory(data=cd3x3r, num_filter=num_d3x3, kernel=(3, 3), pad=(1, 1), name=('%s_double_3x3_0' % name)) | ||
cd3x3 = ConvFactory(data=cd3x3, num_filter=num_d3x3, kernel=(3, 3), pad=(1, 1), name=('%s_double_3x3_1' % name)) | ||
# pool + proj | ||
pooling = mx.symbol.Pooling(data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool, name=('%s_pool_%s_pool' % (pool, name))) | ||
cproj = ConvFactory(data=pooling, num_filter=proj, kernel=(1, 1), name=('%s_proj' % name)) | ||
# concat | ||
concat = mx.symbol.Concat(*[c1x1, c3x3, cd3x3, cproj], name='ch_concat_%s_chconcat' % name) | ||
return concat | ||
|
||
def InceptionFactoryB(data, num_3x3red, num_3x3, num_d3x3red, num_d3x3, name): | ||
# 3x3 reduce + 3x3 | ||
c3x3r = ConvFactory(data=data, num_filter=num_3x3red, kernel=(1, 1), name=('%s_3x3' % name), suffix='_reduce') | ||
c3x3 = ConvFactory(data=c3x3r, num_filter=num_3x3, kernel=(3, 3), pad=(1, 1), stride=(2, 2), name=('%s_3x3' % name)) | ||
# double 3x3 reduce + double 3x3 | ||
cd3x3r = ConvFactory(data=data, num_filter=num_d3x3red, kernel=(1, 1), name=('%s_double_3x3' % name), suffix='_reduce') | ||
cd3x3 = ConvFactory(data=cd3x3r, num_filter=num_d3x3, kernel=(3, 3), pad=(1, 1), stride=(1, 1), name=('%s_double_3x3_0' % name)) | ||
cd3x3 = ConvFactory(data=cd3x3, num_filter=num_d3x3, kernel=(3, 3), pad=(1, 1), stride=(2, 2), name=('%s_double_3x3_1' % name)) | ||
# pool + proj | ||
pooling = mx.symbol.Pooling(data=data, kernel=(3, 3), stride=(2, 2), pool_type="max", name=('max_pool_%s_pool' % name)) | ||
# concat | ||
concat = mx.symbol.Concat(*[c3x3, cd3x3, pooling], name='ch_concat_%s_chconcat' % name) | ||
return concat | ||
|
||
def inception(nhidden, grad_scale): | ||
# data | ||
data = mx.symbol.Variable(name="data") | ||
# stage 1 | ||
conv1 = ConvFactory(data=data, num_filter=96, kernel=(7, 7), stride=(2, 2), pad=(3, 3), name='conv1') | ||
pool1 = mx.symbol.Pooling(data=conv1, kernel=(3, 3), stride=(2, 2), name='pool1', pool_type='max') | ||
# stage 2 | ||
conv2red = ConvFactory(data=pool1, num_filter=128, kernel=(1, 1), stride=(1, 1), name='conv2red') | ||
conv2 = ConvFactory(data=conv2red, num_filter=288, kernel=(3, 3), stride=(1, 1), pad=(1, 1), name='conv2') | ||
pool2 = mx.symbol.Pooling(data=conv2, kernel=(3, 3), stride=(2, 2), name='pool2', pool_type='max') | ||
# stage 2 | ||
in3a = InceptionFactoryA(pool2, 96, 96, 96, 96, 144, "avg", 48, '3a') | ||
in3b = InceptionFactoryA(in3a, 96, 96, 144, 96, 144, "avg", 96, '3b') | ||
in3c = InceptionFactoryB(in3b, 192, 240, 96, 144, '3c') | ||
# stage 3 | ||
in4a = InceptionFactoryA(in3c, 224, 64, 96, 96, 128, "avg", 128, '4a') | ||
in4b = InceptionFactoryA(in4a, 192, 96, 128, 96, 128, "avg", 128, '4b') | ||
in4c = InceptionFactoryA(in4b, 160, 128, 160, 128, 160, "avg", 128, '4c') | ||
in4d = InceptionFactoryA(in4c, 96, 128, 192, 160, 96, "avg", 128, '4d') | ||
in4e = InceptionFactoryB(in4d, 128, 192, 192, 256, '4e') | ||
# stage 4 | ||
in5a = InceptionFactoryA(in4e, 352, 192, 320, 160, 224, "avg", 128, '5a') | ||
in5b = InceptionFactoryA(in5a, 352, 192, 320, 192, 224, "max", 128, '5b') | ||
# global avg pooling | ||
avg = mx.symbol.Pooling(data=in5b, kernel=(7, 7), stride=(1, 1), name="global_pool", pool_type='avg') | ||
# linear classifier | ||
flatten = mx.symbol.Flatten(data=avg, name='flatten') | ||
fc1 = mx.symbol.FullyConnected(data=flatten, num_hidden=nhidden, name='fc1') | ||
softmax = mx.symbol.Softmax(data=fc1, name='softmax') | ||
return softmax | ||
|
||
softmax = inception(21841, 1.0) | ||
|
||
batch_size = 64 | ||
num_gpu = 4 | ||
gpus = [mx.gpu(i) for i in range(num_gpu)] | ||
input_shape = (3, 224, 224) | ||
|
||
train = ilsvrc12_iterator(batch_size=batch_size, input_shape=(3,224,224)) | ||
|
||
model_prefix = "model/Inception-Full" | ||
num_round = 10 | ||
|
||
logging.info("This script is used to train ImageNet fullset over 21841 classes.") | ||
logging.info("For noraml 1000 classes problem, please use inception.py") | ||
|
||
model = mx.model.FeedForward(ctx=gpus, symbol=softmax, num_round=num_round, | ||
learning_rate=0.05, momentum=0.9, wd=0.00001) | ||
|
||
model.fit(X=train, | ||
eval_metric="acc", | ||
epoch_end_callback=[mx.callback.Speedometer(batch_size), mx.callback.log_train_metric(100)], | ||
iter_end_callback=mx.callback.do_checkpoint(model_prefix)) |
File renamed without changes.