Skip to content

Commit

Permalink
Update cv and intro
Browse files Browse the repository at this point in the history
  • Loading branch information
judithspd committed Dec 16, 2024
1 parent 1119cf9 commit ea465e9
Show file tree
Hide file tree
Showing 2 changed files with 5 additions and 3 deletions.
5 changes: 3 additions & 2 deletions _pages/about.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ Research interests

Short academic bio
------
- (September 2024 - _present_) Visiting Researcher at INRIA Paris Saclay (Campus de l'École Polytechnique). Project team: COMETE (Privacy, Fairness and Robustness in Information Management). Supervisor: Catuscia Palamidessi, PhD.
- (September 2024 - December 2024) Visiting Researcher at INRIA Paris Saclay (Campus de l'École Polytechnique). Project team: COMETE (Privacy, Fairness and Robustness in Information Management). Supervisor: Catuscia Palamidessi, PhD.
- (December 2022 - _present_) PhD in Science and Technology. University of Cantabria. _"Privacy Preserving Techniques for Data Science Environments"_. Supervisor: [Álvaro López García, PhD](https://alvarolopez.github.io/).
- (July 2021 - _present_) Data Science Researcher at the Institute of Physics of Cantabria (Spanish National Research Council, CSIC). Working on different projects, mainly: FACE, AI4EOSC, EOSC SIESTA.
- (September 2020 - June 2021) Interuniversity Master in Data Science. International University Menéndez Pelayo (UIMP) and University of Cantabria (UC). Final master thesis: _"Predictive Maintenance and Spectral Analysis: from Fourier to Machine Learning"_ (_cum laude_), available [here](https://digital.csic.es/handle/10261/245733).
Expand All @@ -37,7 +37,8 @@ Short academic bio

Publications
------
- (2024) **Sáinz-Pardo Díaz, J.**, Castrillo, M., Bartok, J., Heredia Cachá, I., Malkin Ondík, I., Martynovskyi, I., Alibabaei, K., Berberi, L., Kozlov, V. & López García, Á. (2024). _Personalized Federated Learning for improving radar based precipitation nowcasting on heterogeneous areas_. Earth Science Informatics. <https://doi.org/10.1007/s12145-024-01438-9>.
- (2024) **Sáinz-Pardo Díaz, J.**, & López García, Á. (2024). An Open Source Python Library for Anonymizing Sensitive Data. Sci Data 11, 1289. <https://doi.org/10.1038/s41597-024-04019-z}>.
- (2024) **Sáinz-Pardo Díaz, J.**, Castrillo, M., Bartok, J., Heredia Cachá, I., Malkin Ondík, I., Martynovskyi, I., Alibabaei, K., Berberi, L., Kozlov, V. & López García, Á. (2024). Personalized Federated Learning for improving radar based precipitation nowcasting on heterogeneous areas. Earth Science Informatics. <https://doi.org/10.1007/s12145-024-01438-9>.
- (2024) **Sáinz-Pardo Díaz, J.**, Heredia Canales, A., Heredia Cachá, I., Tran, V., Nguyen, G., Alibabaei, K., Obregón Ruiz, M., Rebolledo Ruiz, S., & López García, Á. Making Federated Learning Accessible to Scientists: The AI4EOSC Approach. In Proceedings of the 2024 ACM Workshop on Information Hiding and Multimedia Security (IH&MMSec '24). Association for Computing Machinery, New York, NY, USA, 253–264. <https://doi.org/10.1145/3658664.3659642>.
- (2023) **Sáinz-Pardo Díaz, J.**, Castrillo, M., & López García, Á. (2023). Deep learning based soft-sensor for continuous chlorophyll estimation on decentralized data. Water Research, 120726. <https://doi.org/10.1016/j.watres.2023.120726>.
- (2023) **Sáinz-Pardo Díaz, J.**, & López García, Á. (2023). Comparison of machine learning models applied on anonymized data with different techniques, 2023 IEEE International Conference on Cyber Security and Resilience (CSR), Venice, Italy, 2023, pp. 618-623. <https://doi.org/10.1109/CSR57506.2023.10224917>.
Expand Down
3 changes: 2 additions & 1 deletion _pages/cv.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ redirect_from:

Education and research experience
======
- (September 2024 - _present_) Visiting Researcher at INRIA Paris Saclay (Campus de l'École Polytechnique). Project team: COMETE (Privacy, Fairness and Robustness in Information Management). Supervisor: Catuscia Palamidessi, PhD.
- (September 2024 - December 2024) Visiting Researcher at INRIA Paris Saclay (Campus de l'École Polytechnique). Project team: COMETE (Privacy, Fairness and Robustness in Information Management). Supervisor: Catuscia Palamidessi, PhD.
- (December 2022 - _present_) PhD in Science and Technology. University of Cantabria. _"Privacy Preserving Techniques for Data Science Environments"_. Supervisor: [Álvaro López García, PhD](https://alvarolopez.github.io/).
- (July 2021 - _present_) Data Science Researcher at the Institute of Physics of Cantabria (Spanish National Research Council, CSIC). Working on different projects, mainly: FACE, AI4EOSC, EOSC SIESTA.
- (September 2020 - June 2021) Interuniversity Master in Data Science. International University Menendez Pelayo (UIMP) and University of Cantabria (UC). Final master thesis: _"Predictive Maintenance and Spectral Analysis: from Fourier to Machine Learning"_ (_cum laude_), available [here](https://digital.csic.es/handle/10261/245733).
Expand All @@ -21,6 +21,7 @@ Education and research experience

Publications in peer reviewed high impact journals
======
- (2024) **Sáinz-Pardo Díaz, J.**, & López García, Á. (2024). An Open Source Python Library for Anonymizing Sensitive Data. Sci Data 11, 1289. <https://doi.org/10.1038/s41597-024-04019-z}>.
- (2024) **Sáinz-Pardo Díaz, J.**, Castrillo, M., Bartok, J., Heredia Cachá, I., Malkin Ondík, I., Martynovskyi, I., Alibabaei, K., Berberi, L., Kozlov, V. & López García, Á. (2024). _Personalized Federated Learning for improving radar based precipitation nowcasting on heterogeneous areas_. Earth Science Informatics. <https://doi.org/10.1007/s12145-024-01438-9>.
- (2023) **Sáinz-Pardo Díaz, J.**, Castrillo, M., & López García, Á. (2023). _Deep learning based soft-sensor for continuous chlorophyll estimation on decentralized data_. Water Research, 120726. <https://doi.org/10.1016/j.watres.2023.120726>.
- (2023) Heredia Cacha, I., **Sáinz-Pardo Díaz, J.**, Castrillo, M., & López García, Á. (2023). _Forecasting COVID-19 spreading through an ensemble of classical and machine learning models: Spain’s case study_. Scientific Reports, 13(1), 6750. <https://doi.org/10.1038/s41598-023-33795-8>.
Expand Down

0 comments on commit ea465e9

Please sign in to comment.