Skip to content

Commit

Permalink
Some minor nits
Browse files Browse the repository at this point in the history
  • Loading branch information
jirilebl committed Dec 9, 2023
1 parent bc77526 commit 0b40e17
Show file tree
Hide file tree
Showing 2 changed files with 14 additions and 5 deletions.
9 changes: 7 additions & 2 deletions notations.tex
Original file line number Diff line number Diff line change
Expand Up @@ -374,7 +374,7 @@

\newglossaryentry{not:Zf}{
name={$Z_f$},
description={zero set of $f$, $f^{-1}(0)$},
description={zero set of $f$, that is, $f^{-1}(0)$},
}

\newglossaryentry{not:ideal}{
Expand All @@ -388,7 +388,7 @@
}

\newglossaryentry{not:vanishingset}{
name={$V(I)$},
name={$V_p(I)$},
description={the common zero set of germs in $I$},
}

Expand Down Expand Up @@ -481,3 +481,8 @@
name={$X \overset{\text{def}}{=} Y$},
description={define $X$ to be $Y$},
}

\newglossaryentry{not:dolbeault}{
name={$H^{(p,q)}(U)$},
description={Dolbeault cohomology groups},
}
10 changes: 7 additions & 3 deletions scv.tex
Original file line number Diff line number Diff line change
Expand Up @@ -490,8 +490,9 @@
\bigskip

\noindent
During the writing of this book,
the author was in part supported by NSF grant DMS-1362337.
During some of the writing of this book,
the author was in part supported by NSF grant DMS-1362337
and Simons Foundation collaboration grant 710294.

\bigskip

Expand Down Expand Up @@ -11637,7 +11638,8 @@ \section{Solvability of the \texorpdfstring{$\bar{\partial}$}{dbar}-problem in t
For an open set $U \subset \C^n$,
we define the
\emph{\myindex{Dolbeault cohomology groups}}\index{cohomology}
(quotient of complex vector spaces)
(quotient of complex vector spaces)%
\glsadd{not:dolbeault}%
\begin{equation*}
H^{(p,q)}(U)
=
Expand Down Expand Up @@ -17669,6 +17671,7 @@ \chapter{Results from One Complex Variable} \label{ap:onevarresults}
\qquad
g(z) =
\overline{f(\bar{z})} \quad \text{if $z \in U_-$},
\avoidbreak
\end{equation*}
is holomorphic on $U$.
\end{thm}
Expand All @@ -17687,6 +17690,7 @@ \chapter{Results from One Complex Variable} \label{ap:onevarresults}
g(z) =
-f(\bar{z}) \quad \text{if $z \in U_-$},
\end{equation*}
\avoidbreak
is harmonic on $U$.
\end{thm}

Expand Down

0 comments on commit 0b40e17

Please sign in to comment.