Skip to content
/ mxsem Public

A lavaan-like syntax for structural equation models with OpenMx

License

Notifications You must be signed in to change notification settings

jhorzek/mxsem

Repository files navigation

mxsem

Total Downloads R-CMD-check

mxsem provides a lavaan-like (Rosseel, 2012) syntax to implement structural equation models (SEM) with OpenMx (Boker et al., 2011). The objective is to simplify fitting basic SEM with OpenMx, while also unlocking some very useful advanced features. For instance, mxsem allows for parameter transformations and definition variables. However, mxsem is intentionally incomplete in order to focus on simplicity. The main function (mxsem()) is similar to lavaan’s sem()-function in that it tries to set up parts of the model automatically (e.g., adding variances automatically or scaling the latent variables automatically).

Warning: The syntax and settings of mxsem may differ from lavaan in some cases. See vignette("Syntax", package = "mxsem") for more details on the syntax and the default arguments.

Alternatives

mxsem is not the first package providing a lavaan-like syntax for OpenMx. You will find similar functions in the following packages:

  • metaSEM (Cheung, 2015) provides a lavaan2RAM function that can be combined with the create.mxModel function. This combination offers more features than mxsem. For instance, constraints of the form a < b are supported. In mxsem such constraints require algebras (e.g., !diff; a := b - exp(diff)).
  • umx (Bates et al., 2019) provides the umxRAM and umxLav2RAM functions that can parse single lavaan-style statements (e.g., eta =~ y1 + y2 + y3) or an entire lavaan models to OpenMx models.
  • tidySEM (van Lissa, 2023) provides the as_ram function to translate lavaan syntax to OpenMx and also implements a unified syntax to specify both, lavaan and OpenMx models. Additionally, it works well with the tidyverse.
  • ezMx (Bates, et al. 2014) simplifies fitting SEM with OpenMx and also provides a translation of lavaan models to OpenMx with the lavaan.to.OpenMx function.

Because mxsem implements the syntax parser from scratch, it can extend the lavaan syntax to account for specific OpenMx features. This enables implicit transformations with curly braces.

Citation

Cite OpenMx (Boker et al., 2011) for the modeling and lavaan for the syntax (Rosseel, 2012). To cite mxsem, check citation("mxsem").

Installation

mxsem is available from CRAN:

install.packages("mxsem")

The newest version of the package can be installed from GitHub using the following commands in R:

if(!require(devtools)) install.packages("devtools")
devtools::install_github("jhorzek/mxsem", 
                         ref = "main")

Because mxsem uses Rcpp, you will need a compiler for C++ (e.g., by installing Rtools on Windows, Xcode on Mac and build-essential on linux).

Example

The following example is directly adapted from lavaan:

library(mxsem)
model <- '
  # latent variable definitions
     ind60 =~ x1 + x2 + x3
     dem60 =~ y1 + a1*y2 + b*y3 + c1*y4
     dem65 =~ y5 + a2*y6 + b*y7 + c2*y8

  # regressions
    dem60 ~ ind60
    dem65 ~ ind60 + dem60

  # residual correlations
    y1 ~~ y5
    y2 ~~ y4 + y6
    y3 ~~ y7
    y4 ~~ y8
    y6 ~~ y8
'

mxsem(model = model,
      data  = OpenMx::Bollen) |>
  mxTryHard() |>
  summary()
Show summary
#> Summary of untitled2 
#>  
#> free parameters:
#>           name matrix   row   col      Estimate   Std.Error A lbound ubound
#> 1     ind60→x2      A    x2 ind60  2.012660e+00  0.38891027                
#> 2     ind60→x3      A    x3 ind60  1.650326e+00  0.36081541                
#> 3  ind60→dem60      A dem60 ind60  4.091644e+00  0.82825703                
#> 4  ind60→dem65      A dem65 ind60  4.476238e+01 33.03590013                
#> 5           a1      A    y2 dem60  1.296343e+00  0.22069102                
#> 6            b      A    y3 dem60  1.187559e+00  0.13597913                
#> 7           c1      A    y4 dem60  1.413415e+00  0.18183251                
#> 8  dem60→dem65      A dem65 dem60 -9.854813e+00  5.74179618                
#> 9           a2      A    y6 dem65  1.121844e+00  0.16042018                
#> 10          c2      A    y8 dem65  1.224479e+00  0.14984899                
#> 11       y1↔y1      S    y1    y1  2.686888e+00  0.59075793    1e-06       
#> 12       y2↔y2      S    y2    y2  8.576610e+00  1.48229765    1e-06       
#> 13       y3↔y3      S    y3    y3  5.847195e+00  1.09096957    1e-06       
#> 14       y2↔y4      S    y2    y4  1.987018e+00  0.78013870                
#> 15       y4↔y4      S    y4    y4  3.387325e+00  0.74388310    1e-06       
#> 16       y2↔y6      S    y2    y6  2.385179e+00  0.76306049                
#> 17       y6↔y6      S    y6    y6  5.129115e+00  0.91213692    1e-06       
#> 18       x1↔x1      S    x1    x1  3.013521e-01  0.06239685    1e-06       
#> 19       x2↔x2      S    x2    x2  1.325533e+00  0.27206604    1e-06       
#> 20       x3↔x3      S    x3    x3  1.326978e+00  0.25275042    1e-06       
#> 21       y1↔y5      S    y1    y5  7.307489e-01  0.40428182                
#> 22       y5↔y5      S    y5    y5  2.262309e+00  0.47568663    1e-06       
#> 23       y3↔y7      S    y3    y7  1.315088e+00  0.74793582                
#> 24       y7↔y7      S    y7    y7  3.819416e+00  0.79913029    1e-06       
#> 25       y4↔y8      S    y4    y8  3.442654e-01  0.46177893                
#> 26       y6↔y8      S    y6    y8  1.438664e+00  0.60291913                
#> 27       y8↔y8      S    y8    y8  3.402689e+00  0.72529659    1e-06       
#> 28 ind60↔ind60      S ind60 ind60  2.286328e-01  0.08085603    1e-06       
#> 29 dem60↔dem60      S dem60 dem60  1.000001e-06          NA !     0!       
#> 30 dem65↔dem65      S dem65 dem65  1.334856e-01  0.24827033    1e-06       
#> 31      one→y1      M     1    y1  5.464667e+00  0.29473841                
#> 32      one→y2      M     1    y2  4.256443e+00  0.44738225                
#> 33      one→y3      M     1    y3  6.563110e+00  0.38723974                
#> 34      one→y4      M     1    y4  4.452533e+00  0.38359678                
#> 35      one→y6      M     1    y6  2.978074e+00  0.38247416                
#> 36      one→x1      M     1    x1  5.054383e+00  0.08406584                
#> 37      one→x2      M     1    x2  4.792195e+00  0.17327643                
#> 38      one→x3      M     1    x3  3.557690e+00  0.16123756                
#> 39      one→y5      M     1    y5  5.136252e+00  0.30340241                
#> 40      one→y7      M     1    y7  6.196264e+00  0.37176597                
#> 41      one→y8      M     1    y8  4.043390e+00  0.37170879                
#> 
#> Model Statistics: 
#>                |  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units)
#>        Model:             41                    784              3274.152
#>    Saturated:             77                    748                    NA
#> Independence:             22                    803                    NA
#> Number of observations/statistics: 75/825
#> 
#> Information Criteria: 
#>       |  df Penalty  |  Parameters Penalty  |  Sample-Size Adjusted
#> AIC:       1706.152               3356.152                 3460.515
#> BIC:       -110.759               3451.169                 3321.947
#> To get additional fit indices, see help(mxRefModels)
#> timestamp: 2024-07-21 20:44:38 
#> Wall clock time: 0.1139431 secs 
#> optimizer:  SLSQP 
#> OpenMx version number: 2.21.11 
#> Need help?  See help(mxSummary)

Adding bounds

Lower and upper bounds can be added to any of the parameters in the model. The following demonstrates bounds on a loading:

library(mxsem)
model <- '
  # latent variable definitions
     ind60 =~ x1 + x2 + x3
     dem60 =~ y1 + a1*y2 + b*y3 + c1*y4
     dem65 =~ y5 + a2*y6 + b*y7 + c2*y8
     
  # lower bound on a1
     a1 > 0
  # upper bound on a2
     a2 < 10.123
'

mxsem(model = model,
      data  = OpenMx::Bollen, 
      # use latent variances to scale the model
      scale_loadings = FALSE, 
      scale_latent_variances = TRUE) |>
  mxTryHard() |>
  summary()
Show summary
#> Summary of untitled4 
#>  
#> free parameters:
#>           name matrix   row   col    Estimate  Std.Error A lbound ubound
#> 1     ind60→x1      A    x1 ind60 -0.66602168 0.06402911                
#> 2     ind60→x2      A    x2 ind60 -1.45290840 0.12615652                
#> 3     ind60→x3      A    x3 ind60 -1.21127230 0.12698816                
#> 4     dem60→y1      A    y1 dem60  2.21018030 0.24806182                
#> 5           a1      A    y2 dem60  2.98303646 0.39464650        0       
#> 6            b      A    y3 dem60  2.52119429 0.27195610                
#> 7           c1      A    y4 dem60  2.86625955 0.31512659                
#> 8     dem65→y5      A    y5 dem65  2.08192035 0.25256395                
#> 9           a2      A    y6 dem65  2.61417796 0.33067157          10.123
#> 10          c2      A    y8 dem65  2.72104603 0.30578894                
#> 11       x1↔x1      S    x1    x1  0.08176774 0.01979715    1e-06       
#> 12       x2↔x2      S    x2    x2  0.11868552 0.07038039    1e-06       
#> 13       x3↔x3      S    x3    x3  0.46717050 0.08933577    1e-06       
#> 14       y1↔y1      S    y1    y1  1.92282818 0.40072499    1e-06       
#> 15       y2↔y2      S    y2    y2  6.51159526 1.20284012    1e-06       
#> 16       y3↔y3      S    y3    y3  5.31392061 0.95937939    1e-06       
#> 17       y4↔y4      S    y4    y4  2.88902582 0.63409911    1e-06       
#> 18       y5↔y5      S    y5    y5  2.38176160 0.45553891    1e-06       
#> 19       y6↔y6      S    y6    y6  4.36051128 0.82332444    1e-06       
#> 20       y7↔y7      S    y7    y7  3.58248880 0.68191696    1e-06       
#> 21       y8↔y8      S    y8    y8  2.95767562 0.62791664    1e-06       
#> 22 ind60↔dem60      S ind60 dem60 -0.43953545 0.10490002                
#> 23 ind60↔dem65      S ind60 dem65 -0.54935145 0.09041729                
#> 24 dem60↔dem65      S dem60 dem65  0.97753003 0.02697925                
#> 25      one→x1      M     1    x1  5.05438406 0.08369988                
#> 26      one→x2      M     1    x2  4.79219545 0.17243259                
#> 27      one→x3      M     1    x3  3.55769028 0.16060761                
#> 28      one→y1      M     1    y1  5.46466541 0.30131941                
#> 29      one→y2      M     1    y2  4.25644008 0.45333817                
#> 30      one→y3      M     1    y3  6.56310968 0.39450506                
#> 31      one→y4      M     1    y4  4.45253268 0.38484200                
#> 32      one→y5      M     1    y5  5.13625169 0.29928682                
#> 33      one→y6      M     1    y6  2.97807303 0.38639154                
#> 34      one→y7      M     1    y7  6.19626363 0.36407370                
#> 35      one→y8      M     1    y8  4.04338969 0.37174814                
#> 
#> Model Statistics: 
#>                |  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units)
#>        Model:             35                    790              3130.995
#>    Saturated:             77                    748                    NA
#> Independence:             22                    803                    NA
#> Number of observations/statistics: 75/825
#> 
#> Information Criteria: 
#>       |  df Penalty  |  Parameters Penalty  |  Sample-Size Adjusted
#> AIC:      1550.9954               3200.995                 3265.611
#> BIC:      -279.8202               3282.107                 3171.797
#> To get additional fit indices, see help(mxRefModels)
#> timestamp: 2024-07-21 20:44:40 
#> Wall clock time: 0.2327423 secs 
#> optimizer:  SLSQP 
#> OpenMx version number: 2.21.11 
#> Need help?  See help(mxSummary)

mxsem adds lower bounds to any of the variances by default. To remove these lower bounds, set lbound_variances = FALSE when calling mxsem().

Definition Variables

Definition variables are, for instance, used in latent growth curve models when the time intervals between observations are different for the subjects in the data set. Here is an example, where the variables t_1-t_5 indicate the person-specific times of observation:

library(mxsem)
set.seed(3489)
dataset <- simulate_latent_growth_curve(N = 100)
head(dataset)
#>             y1       y2       y3        y4         y5 t_1       t_2      t_3
#> [1,] 1.2817946 5.159870 7.178191  8.950046 11.4822306   0 1.5792322 2.304777
#> [2,] 1.1796379 3.588279 5.927219  8.381157 10.4640667   0 1.6701976 3.530621
#> [3,] 0.2196010 0.763441 2.499564  3.672995  4.4505868   0 0.6452145 2.512730
#> [4,] 0.5688185 1.440709 1.523483  1.416965  1.9674847   0 1.7171826 3.245522
#> [5,] 3.4928919 2.620657 1.753159  1.080701 -0.4436508   0 1.4055839 2.024568
#> [6,] 0.3520293 5.126854 7.390669 10.721785 12.6363472   0 1.5249299 2.400432
#>           t_4      t_5
#> [1,] 3.120797 4.217403
#> [2,] 5.004695 6.408367
#> [3,] 3.761189 4.729461
#> [4,] 4.331997 6.145424
#> [5,] 3.570780 5.517224
#> [6,] 3.654230 4.222212

In OpenMx, parameters can be set to the values found in the columns of the data set with the data. prefix. This is used in the following to fix the loadings of a latent slope variable on the observations to the times recorded in t_1-t_5:

library(mxsem)
model <- "
  # specify latent intercept
     I =~ 1*y1 + 1*y2 + 1*y3 + 1*y4 + 1*y5
  # specify latent slope
     S =~ data.t_1 * y1 + data.t_2 * y2 + data.t_3 * y3 + data.t_4 * y4 + data.t_5 * y5
    
  # specify means of latent intercept and slope
     I ~ int*1
     S ~ slp*1
  
  # set intercepts of manifest variables to zero
     y1 ~ 0*1; y2 ~ 0*1; y3 ~ 0*1; y4 ~ 0*1; y5 ~ 0*1;
  "

mxsem(model = model,
      data  = dataset) |>
  mxTryHard() |>
  summary()
Show summary
#> Summary of untitled6 
#>  
#> free parameters:
#>     name matrix row col    Estimate   Std.Error A lbound ubound
#> 1  y1↔y1      S  y1  y1  0.02578029 0.014488230       0!       
#> 2  y2↔y2      S  y2  y2  0.04010524 0.008389744       0!       
#> 3  y3↔y3      S  y3  y3  0.04008175 0.006984929       0!       
#> 4  y4↔y4      S  y4  y4  0.01752572 0.006930952 !     0!       
#> 5  y5↔y5      S  y5  y5  0.05936968 0.016067405    1e-06       
#> 6    I↔I      S   I   I  1.02593614 0.148068976    1e-06       
#> 7    I↔S      S   I   S -0.14724710 0.110019557                
#> 8    S↔S      S   S   S  1.13050977 0.160502645    1e-06       
#> 9    int      M   1   I  0.93112329 0.102209132                
#> 10   slp      M   1   S  0.48442608 0.106476404                
#> 
#> Model Statistics: 
#>                |  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units)
#>        Model:             10                     10              841.2609
#>    Saturated:             20                      0                    NA
#> Independence:             10                     10                    NA
#> Number of observations/statistics: 100/20
#> 
#> Information Criteria: 
#>       |  df Penalty  |  Parameters Penalty  |  Sample-Size Adjusted
#> AIC:       821.2609               861.2609                 863.7328
#> BIC:       795.2092               887.3126                 855.7301
#> To get additional fit indices, see help(mxRefModels)
#> timestamp: 2024-07-21 20:44:41 
#> Wall clock time: 0.4582329 secs 
#> optimizer:  SLSQP 
#> OpenMx version number: 2.21.11 
#> Need help?  See help(mxSummary)

Transformations

Sometimes, one may want to express one parameter as a function of other parameters. In moderated non-linear factor analysis, for example, model parameters are often expressed in terms of a covariate k. For instance, the effect $a$ of $\xi$ on $\eta$ could be expressed as $a = a_0 + a_1\times k$.

library(mxsem)
set.seed(9820)
dataset <- simulate_moderated_nonlinear_factor_analysis(N = 100)
head(dataset)
#>              x1         x2         x3          y1         y2            y3 k
#> [1,] -1.2166034 -1.2374549 -1.3731943 -1.01018683 -0.8296293 -1.2300555484 0
#> [2,]  1.1911346  0.9971499  1.0226322  0.86048030  0.4509088  0.6052786392 1
#> [3,] -0.7777169 -0.4725291 -0.8507347 -1.09582848 -0.5035753 -0.8048378456 0
#> [4,]  1.0027847  1.2351709  0.6951317  0.94040287  0.6684979  0.6596891858 0
#> [5,]  0.4387896  0.3919877  0.3260557 -0.58188691 -0.3614349 -0.4901022121 0
#> [6,] -1.4951549 -0.8834637 -1.1715535  0.01173845 -0.4697865 -0.0006475256 0

mxsem currently supports two ways of specifying such transformations. First, they can be specified explicitly. To this end, the parameters $a_0$ and $a_1$ must fist be initialized with !a0 and !a1. Additionally, the transformation must be defined with a := a0 + a1*data.k.

model <- "
  # loadings
     xi =~ x1 + x2 + x3
     eta =~ y1 + y2 + y3
  # regression
     eta ~ a*xi
  
  # we need two new parameters: a0 and a1. These are created as follows:
     !a0
     !a1
  # Now, we redefine a to be a0 + k*a1, where k is found in the data
     a := a0 + data.k*a1
"

fit_mx <- mxsem(model = model,
                data  = dataset) |>
  mxTryHard()

summary(fit_mx)

# get just the value for parameter a:
mxEval(expression = a, model = fit_mx)
Show summary
#> Summary of untitled20 
#>  
#> free parameters:
#>       name         matrix row col    Estimate   Std.Error A lbound ubound
#> 1    xi→x2              A  x2  xi  0.79157856 0.026246030                
#> 2    xi→x3              A  x3  xi  0.89166084 0.027991530                
#> 3   eta→y2              A  y2 eta  0.81610417 0.028977422                
#> 4   eta→y3              A  y3 eta  0.90741898 0.027924339                
#> 5    x1↔x1              S  x1  x1  0.04060218 0.011022272       0!       
#> 6    x2↔x2              S  x2  x2  0.04519854 0.008621602       0!       
#> 7    x3↔x3              S  x3  x3  0.04647176 0.010143713       0!       
#> 8    y1↔y1              S  y1  y1  0.03388953 0.008495337       0!       
#> 9    y2↔y2              S  y2  y2  0.04210954 0.007766716 !     0!       
#> 10   y3↔y3              S  y3  y3  0.03107018 0.007268297 !     0!       
#> 11   xi↔xi              S  xi  xi  1.07304573 0.157790632    1e-06       
#> 12 eta↔eta              S eta eta  0.26127595 0.041232498    1e-06       
#> 13  one→x1              M   1  x1 -0.14881004 0.105059830                
#> 14  one→x2              M   1  x2 -0.10969640 0.084340983                
#> 15  one→x3              M   1  x3 -0.15448448 0.094428639                
#> 16  one→y1              M   1  y1 -0.05304588 0.089763143                
#> 17  one→y2              M   1  y2 -0.13040824 0.074580498                
#> 18  one→y3              M   1  y3 -0.05666192 0.081649015                
#> 19      a0 new_parameters   1   1  0.78168122 0.069380240                
#> 20      a1 new_parameters   1   2 -0.19334116 0.107739139                
#> 
#> Model Statistics: 
#>                |  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units)
#>        Model:             20                      7              475.3822
#>    Saturated:             27                      0                    NA
#> Independence:             12                     15                    NA
#> Number of observations/statistics: 100/27
#> 
#> Information Criteria: 
#>       |  df Penalty  |  Parameters Penalty  |  Sample-Size Adjusted
#> AIC:       461.3822               515.3822                 526.0151
#> BIC:       443.1460               567.4856                 504.3206
#> To get additional fit indices, see help(mxRefModels)
#> timestamp: 2024-07-21 20:44:42 
#> Wall clock time: 0.07763433 secs 
#> optimizer:  SLSQP 
#> OpenMx version number: 2.21.11 
#> Need help?  See help(mxSummary)
#>           [,1]
#> [1,] 0.7816812

Alternatively, the transformations can be defined implicitly by placing the algebra in curly braces and directly inserting it in the syntax in place of the parameter label. This is inspired by the approach in metaSEM (Cheung, 2015).

model <- "
  # loadings
     xi =~ x1 + x2 + x3
     eta =~ y1 + y2 + y3
  # regression
     eta ~ {a0 + a1*data.k} * xi
"

mxsem(model = model,
      data  = dataset) |>
  mxTryHard() |>
  summary()
Show summary
#> Summary of untitled48 
#>  
#> free parameters:
#>       name         matrix row col    Estimate   Std.Error A lbound ubound
#> 1    xi→x2              A  x2  xi  0.79157856 0.026246030                
#> 2    xi→x3              A  x3  xi  0.89166084 0.027991530                
#> 3   eta→y2              A  y2 eta  0.81610417 0.028977422                
#> 4   eta→y3              A  y3 eta  0.90741898 0.027924339                
#> 5    x1↔x1              S  x1  x1  0.04060218 0.011022272       0!       
#> 6    x2↔x2              S  x2  x2  0.04519854 0.008621602       0!       
#> 7    x3↔x3              S  x3  x3  0.04647176 0.010143713       0!       
#> 8    y1↔y1              S  y1  y1  0.03388953 0.008495337       0!       
#> 9    y2↔y2              S  y2  y2  0.04210954 0.007766716 !     0!       
#> 10   y3↔y3              S  y3  y3  0.03107018 0.007268297 !     0!       
#> 11   xi↔xi              S  xi  xi  1.07304573 0.157790632    1e-06       
#> 12 eta↔eta              S eta eta  0.26127595 0.041232498    1e-06       
#> 13  one→x1              M   1  x1 -0.14881004 0.105059830                
#> 14  one→x2              M   1  x2 -0.10969640 0.084340983                
#> 15  one→x3              M   1  x3 -0.15448448 0.094428639                
#> 16  one→y1              M   1  y1 -0.05304588 0.089763143                
#> 17  one→y2              M   1  y2 -0.13040824 0.074580498                
#> 18  one→y3              M   1  y3 -0.05666192 0.081649015                
#> 19      a0 new_parameters   1   1  0.78168122 0.069380240                
#> 20      a1 new_parameters   1   2 -0.19334116 0.107739139                
#> 
#> Model Statistics: 
#>                |  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units)
#>        Model:             20                      7              475.3822
#>    Saturated:             27                      0                    NA
#> Independence:             12                     15                    NA
#> Number of observations/statistics: 100/27
#> 
#> Information Criteria: 
#>       |  df Penalty  |  Parameters Penalty  |  Sample-Size Adjusted
#> AIC:       461.3822               515.3822                 526.0151
#> BIC:       443.1460               567.4856                 504.3206
#> To get additional fit indices, see help(mxRefModels)
#> timestamp: 2024-07-21 20:44:42 
#> Wall clock time: 0.0693748 secs 
#> optimizer:  SLSQP 
#> OpenMx version number: 2.21.11 
#> Need help?  See help(mxSummary)

You can also provide custom names for the algebra results:

model <- "
  # loadings
     xi  =~ x1 + x2 + x3
     eta =~ y1 + y2 + y3
  # regression
     eta ~ {a := a0 + a1*data.k} * xi
"

fit_mx <- mxsem(model = model,
                data  = dataset) |>
  mxTryHard()

summary(fit_mx)

# get just the value for parameter a:
mxEval(expression = a, 
       model      = fit_mx)
Show summary
#> Summary of untitled76 
#>  
#> free parameters:
#>       name         matrix row col    Estimate   Std.Error A lbound ubound
#> 1    xi→x2              A  x2  xi  0.79157856 0.026246030                
#> 2    xi→x3              A  x3  xi  0.89166084 0.027991530                
#> 3   eta→y2              A  y2 eta  0.81610417 0.028977422                
#> 4   eta→y3              A  y3 eta  0.90741898 0.027924339                
#> 5    x1↔x1              S  x1  x1  0.04060218 0.011022272       0!       
#> 6    x2↔x2              S  x2  x2  0.04519854 0.008621602       0!       
#> 7    x3↔x3              S  x3  x3  0.04647176 0.010143713       0!       
#> 8    y1↔y1              S  y1  y1  0.03388953 0.008495337       0!       
#> 9    y2↔y2              S  y2  y2  0.04210954 0.007766716 !     0!       
#> 10   y3↔y3              S  y3  y3  0.03107018 0.007268297 !     0!       
#> 11   xi↔xi              S  xi  xi  1.07304573 0.157790632    1e-06       
#> 12 eta↔eta              S eta eta  0.26127595 0.041232498    1e-06       
#> 13  one→x1              M   1  x1 -0.14881004 0.105059830                
#> 14  one→x2              M   1  x2 -0.10969640 0.084340983                
#> 15  one→x3              M   1  x3 -0.15448448 0.094428639                
#> 16  one→y1              M   1  y1 -0.05304588 0.089763143                
#> 17  one→y2              M   1  y2 -0.13040824 0.074580498                
#> 18  one→y3              M   1  y3 -0.05666192 0.081649015                
#> 19      a0 new_parameters   1   1  0.78168122 0.069380240                
#> 20      a1 new_parameters   1   2 -0.19334116 0.107739139                
#> 
#> Model Statistics: 
#>                |  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units)
#>        Model:             20                      7              475.3822
#>    Saturated:             27                      0                    NA
#> Independence:             12                     15                    NA
#> Number of observations/statistics: 100/27
#> 
#> Information Criteria: 
#>       |  df Penalty  |  Parameters Penalty  |  Sample-Size Adjusted
#> AIC:       461.3822               515.3822                 526.0151
#> BIC:       443.1460               567.4856                 504.3206
#> To get additional fit indices, see help(mxRefModels)
#> timestamp: 2024-07-21 20:44:43 
#> Wall clock time: 0.0685575 secs 
#> optimizer:  SLSQP 
#> OpenMx version number: 2.21.11 
#> Need help?  See help(mxSummary)
#>           [,1]
#> [1,] 0.7816812

Adapting the Model

mxsem returns an mxModel object that can be adapted further by users familiar with OpenMx.

Trouble shooting

Sometimes things may go wrong. One way to figure out where mxsem messed up is to look at the parameter table generated internally. This parameter table is not returned by default. See vignette("create_parameter_table", package = "mxsem") for more details.

Another point of failure are the default labels used by mxsem to indicate directed and undirected effects. These are based on unicode characters. If you see parameter labels similar to "eta\u2192y1" in your output, this indicates that your editor cannot display unicode characters. In this case, you can customize the labels as follows:

library(mxsem)
model <- '
  # latent variable definitions
     ind60 =~ x1 + x2 + x3
     dem60 =~ y1 + a1*y2 + b*y3 + c1*y4
     dem65 =~ y5 + a2*y6 + b*y7 + c2*y8
'

mxsem(model      = model,
      data       = OpenMx::Bollen, 
      directed   = "_TO_", 
      undirected = "_WITH_") |>
  mxTryHard() |>
  summary()
Show summary
#> Summary of untitled90 
#>  
#> free parameters:
#>                name matrix   row   col   Estimate  Std.Error A lbound ubound
#> 1       ind60_TO_x2      A    x2 ind60 2.18115702 0.13928666                
#> 2       ind60_TO_x3      A    x3 ind60 1.81852890 0.15228797                
#> 3                a1      A    y2 dem60 1.40364256 0.18390038                
#> 4                 b      A    y3 dem60 1.17009172 0.10871747                
#> 5                c1      A    y4 dem60 1.34853386 0.14637663                
#> 6                a2      A    y6 dem65 1.20074512 0.14855357                
#> 7                c2      A    y8 dem65 1.25031848 0.13637438                
#> 8        x1_WITH_x1      S    x1    x1 0.08169539 0.01979123    1e-06       
#> 9        x2_WITH_x2      S    x2    x2 0.11895803 0.07035954    1e-06       
#> 10       x3_WITH_x3      S    x3    x3 0.46715652 0.08931226    1e-06       
#> 11       y1_WITH_y1      S    y1    y1 1.96249145 0.40675153 !  1e-06       
#> 12       y2_WITH_y2      S    y2    y2 6.49922273 1.20251628    1e-06       
#> 13       y3_WITH_y3      S    y3    y3 5.32559112 0.95894588    1e-06       
#> 14       y4_WITH_y4      S    y4    y4 2.87950917 0.63665763    1e-06       
#> 15       y5_WITH_y5      S    y5    y5 2.37088343 0.45487035    1e-06       
#> 16       y6_WITH_y6      S    y6    y6 4.37313277 0.82251242    1e-06       
#> 17       y7_WITH_y7      S    y7    y7 3.56699590 0.68171379    1e-06       
#> 18       y8_WITH_y8      S    y8    y8 2.96557681 0.62443800 !  1e-06       
#> 19 ind60_WITH_ind60      S ind60 ind60 0.44829143 0.08675629    1e-06       
#> 20 ind60_WITH_dem60      S ind60 dem60 0.63807497 0.19920187                
#> 21 dem60_WITH_dem60      S dem60 dem60 4.50351167 1.00616960    1e-06       
#> 22 ind60_WITH_dem65      S ind60 dem65 0.81413650 0.21697272                
#> 23 dem60_WITH_dem65      S dem60 dem65 4.52636825 0.93243049                
#> 24 dem65_WITH_dem65      S dem65 dem65 4.75141153 1.04835747    1e-06       
#> 25        one_TO_x1      M     1    x1 5.05438446 0.08405796                
#> 26        one_TO_x2      M     1    x2 4.79219580 0.17325941                
#> 27        one_TO_x3      M     1    x3 3.55769067 0.16122376                
#> 28        one_TO_y1      M     1    y1 5.46466750 0.29359270                
#> 29        one_TO_y2      M     1    y2 4.25644400 0.45268169                
#> 30        one_TO_y3      M     1    y3 6.56311167 0.39140003                
#> 31        one_TO_y4      M     1    y4 4.45253335 0.38413637                
#> 32        one_TO_y5      M     1    y5 5.13625263 0.30813153                
#> 33        one_TO_y6      M     1    y6 2.97807393 0.38680848                
#> 34        one_TO_y7      M     1    y7 6.19626358 0.36642683                
#> 35        one_TO_y8      M     1    y8 4.04339058 0.37222072                
#> 
#> Model Statistics: 
#>                |  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units)
#>        Model:             35                    790              3131.168
#>    Saturated:             77                    748                    NA
#> Independence:             22                    803                    NA
#> Number of observations/statistics: 75/825
#> 
#> Information Criteria: 
#>       |  df Penalty  |  Parameters Penalty  |  Sample-Size Adjusted
#> AIC:      1551.1683               3201.168                 3265.784
#> BIC:      -279.6473               3282.280                 3171.970
#> To get additional fit indices, see help(mxRefModels)
#> timestamp: 2024-07-21 20:44:44 
#> Wall clock time: 0.1770966 secs 
#> optimizer:  SLSQP 
#> OpenMx version number: 2.21.11 
#> Need help?  See help(mxSummary)

References