Skip to content

Apply Federated Learning and Deep Learning (Deep Auto-encoder) to detect abnormal data for IoT devices.

Notifications You must be signed in to change notification settings

janerjzou/AD_FL_DL

Repository files navigation

CapstoneProject_Anomaly_Detection_with_FL

from March 2021 to June 2021 (USYD 2021 Semester 1)

Federated Deep Auto-encoder Model

Deep Auto-encoder + Federated Learning

Local Model Architecture Local Deep Autoencoder

Federated Model Architecture FL-AE model


All Datasets

Original files can be downloaded from https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT or https://www.kaggle.com/datasets/mkashifn/nbaiot-dataset/download?datasetVersionNumber=1

Initial modified files store in https://drive.google.com/drive/folders/1hnKIBIIwI3564738E1NMosjVH7fT6BY1?usp=sharing

number of data

Data Distribution

Data attack distribution - pie


Anomaly Detection Steps:

  1. convert 89 csv files to 9 csv files based on devices
  2. load 9 csv files and library packages required
  3. for each device, split benign and anomalous data
  4. train model by using benign data only
  5. calculate threshold to detect benign or anomalous
  6. get detection results (1 - anomalous / 0 - benign)

Environment & Required Libraries/Packages

  • Google Colab
  • Pytorch
  • pandas
  • numpy
  • matplotlib
  • sklearn
  • tqdm
  • time

Main Modules

  • Data pre-processing
  • Retraining mechanism
  • FedAvg / FedAvgM
  • Random select partial devices for train
  • Evaluation

To load datasets

!pip install -U -q PyDrive
from pydrive.auth import GoogleAuth
from pydrive.drive import GoogleDrive
from google.colab import auth
from oauth2client.client import GoogleCredentials
# Authenticate and create the PyDrive client.
auth.authenticate_user()
gauth = GoogleAuth()
gauth.credentials = GoogleCredentials.get_application_default()
drive = GoogleDrive(gauth)

id = '1M3LKek2UCf9HXEieWLDpFHN8PSh7088u'
downloaded = drive.CreateFile({'id':id}) 
downloaded.GetContentFile('Device #1.csv')   # Device #1

id = '19H5gOya_F-DQbaOxyamV9nK3RuSjCgK2'
downloaded = drive.CreateFile({'id':id}) 
downloaded.GetContentFile('Device #2.csv')   # Device #2

id = '1lEd9Qq3q5vy9p4VQpWCGFcuxkrdq-9l6'
downloaded = drive.CreateFile({'id':id}) 
downloaded.GetContentFile('Device #3.csv')   # Device #3

id = '1HQ3txtS2WxzJrBlIhd3GaSVHwzcQEi61'
downloaded = drive.CreateFile({'id':id}) 
downloaded.GetContentFile('Device #4.csv')   # Device #4

id = '1fmzFIkM4FhAMa73uD36j7gHtdCF9-_QV'
downloaded = drive.CreateFile({'id':id}) 
downloaded.GetContentFile('Device #5.csv')   # Device #5

id = '1zk5riI0z3tiC_4OHgTYC7oWETihs65Lj'
downloaded = drive.CreateFile({'id':id}) 
downloaded.GetContentFile('Device #6.csv')   # Device #6

id = '1rJCtnpS_XeqALJ0-CJTrCBxsQwKYlZ30'
downloaded = drive.CreateFile({'id':id}) 
downloaded.GetContentFile('Device #7.csv')   # Device #7

id = '1Mg0A0Fcelu5nsgCgfS9evve4vHGoGha6'
downloaded = drive.CreateFile({'id':id}) 
downloaded.GetContentFile('Device #8.csv')   # Device #8

id = '152_3vZEkrTRrmSs0BpMNt6CQsSnHgO82'
downloaded = drive.CreateFile({'id':id}) 
downloaded.GetContentFile('Device #9.csv')   # Device #9

# add dataset links for other types of devices here....
d1 = pd.read_csv('/content/Device #1.csv')
d2 = pd.read_csv('/content/Device #2.csv')
d3 = pd.read_csv('/content/Device #3.csv')
d4 = pd.read_csv('/content/Device #4.csv')
d5 = pd.read_csv('/content/Device #5.csv')
d6 = pd.read_csv('/content/Device #6.csv')
d7 = pd.read_csv('/content/Device #7.csv')
d8 = pd.read_csv('/content/Device #8.csv')
d9 = pd.read_csv('/content/Device #9.csv')

About

Apply Federated Learning and Deep Learning (Deep Auto-encoder) to detect abnormal data for IoT devices.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published