Driver Monitoring Systems (DMS) are designed to enhance vehicle safety by continuously monitoring the driver’s attention, alertness, and behavior. These systems aim to prevent accidents caused by driver fatigue, distraction, or inattention by providing alerts or taking corrective actions.
- NVIDIA Jetson Nano Developer Kit
- MicroSD card (32GB or larger)
- Power supply (5V 4A recommended)
- Monitor, keyboard, and mouse
- USB camera (with IR capability for low-light conditions, if possible)
- Optional: Cooling fan for the Jetson Nano
- JetPack SDK (which includes the Linux operating system, CUDA, cuDNN, and TensorRT)
- Python libraries: OpenCV, NumPy, etc.
- Deep learning frameworks: TensorFlow or PyTorch
-
Flash the MicroSD Card:
- Download the latest JetPack image from NVIDIA’s website.
- Flash the image onto the MicroSD card using a tool like Etcher.
-
Boot the Jetson Nano:
- Insert the MicroSD card into the Jetson Nano and connect the peripherals (monitor, keyboard, mouse, and camera).
- Power on the Jetson Nano and follow the on-screen instructions to complete the initial setup.
-
Install Required Libraries:
- Open a terminal and update the system:
sudo apt-get update sudo apt-get upgrade
- Install OpenCV:
sudo apt-get install python3-opencv
- Install other required libraries:
sudo apt-get install python3-numpy pip3 install tensorflow
- Open a terminal and update the system:
- Initialize the Camera:
import cv2 cap = cv2.VideoCapture(0) # Use the correct camera index if not cap.isOpened(): print("Error: Could not open video stream.") exit() while True: ret, frame = cap.read() if not ret: break # Display the resulting frame cv2.imshow('Driver Monitoring System', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
-
Load Pretrained Models:
- Use OpenCV’s Haar cascades for face and eye detection:
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')
- Use OpenCV’s Haar cascades for face and eye detection:
-
Detect Faces and Eyes:
while True: ret, frame = cap.read() if not ret: break gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2) roi_gray = gray[y:y+h, x:x+w] roi_color = frame[y:y+h, x:x+w] eyes = eye_cascade.detectMultiScale(roi_gray) for (ex, ey, ew, eh) in eyes: cv2.rectangle(roi_color, (ex, ey), (ex+ew, ey+eh), (0, 255, 0), 2) cv2.imshow('Driver Monitoring System', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
-
Load the Model:
- Assume you have a pretrained model (e.g., for drowsiness detection using TensorFlow or PyTorch):
from tensorflow.keras.models import load_model model = load_model('drowsiness_model.h5')
- Assume you have a pretrained model (e.g., for drowsiness detection using TensorFlow or PyTorch):
-
Predict Drowsiness:
- Extract the eye region and preprocess it for the model:
import numpy as np def preprocess_eye(eye_region): eye_region = cv2.resize(eye_region, (24, 24)) eye_region = eye_region / 255.0 eye_region = np.expand_dims(eye_region, axis=0) eye_region = np.expand_dims(eye_region, axis=-1) return eye_region while True: ret, frame = cap.read() if not ret: break gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x, y, w, h) in faces: roi_gray = gray[y:y+h, x:x+w] eyes = eye_cascade.detectMultiScale(roi_gray) for (ex, ey, ew, eh) in eyes: eye_region = roi_gray[ey:ey+eh, ex:ex+ew] processed_eye = preprocess_eye(eye_region) prediction = model.predict(processed_eye) if prediction < 0.5: # Adjust threshold as necessary cv2.putText(frame, "Drowsy", (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2) else: cv2.putText(frame, "Alert", (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) cv2.imshow('Driver Monitoring System', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
- Extract the eye region and preprocess it for the model:
-
Optimize the Model:
- Use NVIDIA TensorRT to optimize the model for better performance on the Jetson Nano.
- Convert the model to a TensorRT engine:
(Follow TensorRT documentation for model conversion)
import tensorrt as trt
-
Deployment:
- Package your application for deployment.
- Ensure the system can start automatically on boot if intended for a production vehicle.
-
Improve Detection Algorithms:
- Experiment with more advanced deep learning models for better accuracy.
- Use more sophisticated datasets for training your models.
-
Expand Functionality:
- Integrate with vehicle systems to provide real-time alerts.
- Add additional monitoring features, such as detecting phone usage or other distractions.
By following these steps, you can develop a functional Driver Monitoring System using the NVIDIA Jetson Nano. This project not only enhances your understanding of AI and machine learning but also contributes to safer driving experiences.