Skip to content

Pixel-in-Pixel Net: Towards Efficient Facial Landmark Detection in the Wild

Notifications You must be signed in to change notification settings

jahongir7174/PIPNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pixel-in-Pixel Net: Towards Efficient Facial Landmark Detection in the Wild

Note

  • The default dataset is 300W
  • Check convert function in utils/util.py for processing original dataset

Installation

conda create -n PyTorch python=3.8
conda activate PyTorch
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch-lts
pip install opencv-python==4.5.5.64
pip install PyYAML
pip install tqdm

Train

  • Configure your dataset path in main.py for training
  • Download pretrained weights, see Pretrained weights
  • Run bash main.sh $ --train for training, $ is number of GPUs

Test

  • Configure your dataset path in main.py for testing
  • Run python main.py --test for testing

Demo

  • Configure your video path in main.py for visualizing the demo
  • Run python main.py --demo for demo

Results

Backbone Epochs Test NME Pretrained weights
IRNet18 120 3.27 model
IRNet50 120 3.11 model
IRNet100 120 3.08 model

Alt Text

Reference

About

Pixel-in-Pixel Net: Towards Efficient Facial Landmark Detection in the Wild

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published