Pixel-in-Pixel Net: Towards Efficient Facial Landmark Detection in the Wild
- The default dataset is
300W
- Check
convert
function inutils/util.py
for processing original dataset
conda create -n PyTorch python=3.8
conda activate PyTorch
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch-lts
pip install opencv-python==4.5.5.64
pip install PyYAML
pip install tqdm
- Configure your dataset path in
main.py
for training - Download pretrained weights, see
Pretrained weights
- Run
bash main.sh $ --train
for training,$
is number of GPUs
- Configure your dataset path in
main.py
for testing - Run
python main.py --test
for testing
- Configure your video path in
main.py
for visualizing the demo - Run
python main.py --demo
for demo
Backbone | Epochs | Test NME | Pretrained weights |
---|---|---|---|
IRNet18 | 120 | 3.27 | model |
IRNet50 | 120 | 3.11 | model |
IRNet100 | 120 | 3.08 | model |