-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
82 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
from pathlib import Path | ||
from typing import List | ||
import pandas as pd | ||
import torch | ||
from beartype import beartype | ||
from jaxtyping import Float, jaxtyped | ||
from transformers import AutoModel, AutoTokenizer | ||
import nltk | ||
from tqdm.auto import tqdm | ||
|
||
class NoteEncoder: | ||
@beartype | ||
def __init__( | ||
self, | ||
model_name: str = "UFNLP/gatortron-base", | ||
batch_size: int = 32, | ||
device: str = "cuda" if torch.cuda.is_available() else "cpu" | ||
): | ||
self.tokenizer = AutoTokenizer.from_pretrained(model_name) | ||
self.model = AutoModel.from_pretrained(model_name).to(device) | ||
self.batch_size = batch_size | ||
self.device = device | ||
nltk.download('punkt', quiet=True) | ||
|
||
@beartype | ||
def split_note(self, note: str) -> List[str]: | ||
"""Split note into sentences.""" | ||
return nltk.sent_tokenize(note) if pd.notna(note) else [] | ||
|
||
@jaxtyped | ||
@beartype | ||
def encode_sentences( | ||
self, | ||
sentences: List[str] | ||
) -> Float[torch.Tensor, "num_sentences hidden_dim"]: | ||
"""Encode sentences into embeddings.""" | ||
embeddings = [] | ||
|
||
for i in range(0, len(sentences), self.batch_size): | ||
batch = sentences[i:i + self.batch_size] | ||
inputs = self.tokenizer( | ||
batch, | ||
padding=True, | ||
truncation=True, | ||
max_length=512, | ||
return_tensors="pt" | ||
).to(self.device) | ||
|
||
with torch.no_grad(): | ||
outputs = self.model(**inputs) | ||
batch_embeddings = outputs.last_hidden_state[:, 0, :].cpu() | ||
embeddings.append(batch_embeddings) | ||
|
||
return torch.cat(embeddings, dim=0) if embeddings else torch.zeros(0, self.model.config.hidden_size) | ||
|
||
@beartype | ||
def process_patient_records( | ||
input_path: Path, | ||
output_path: Path, | ||
encoder: NoteEncoder | ||
) -> None: | ||
"""Process patient records and save embeddings.""" | ||
df = pd.read_parquet(input_path) | ||
all_embeddings = [] | ||
|
||
for note in tqdm(df['discharge_note'], desc='Processing notes'): | ||
sentences = encoder.split_note(note) | ||
embeddings = encoder.encode_sentences(sentences) | ||
all_embeddings.append(embeddings.numpy().tolist()) | ||
|
||
df['note_embeddings'] = all_embeddings | ||
df.to_parquet(output_path, index=False) | ||
|
||
def main(): | ||
input_path = Path('~/data/physionet.org/processed/mimiciv/patient_records_with_notes.parquet') | ||
output_path = input_path.parent / 'patient_records_with_embeddings.parquet' | ||
|
||
encoder = NoteEncoder() | ||
process_patient_records(input_path, output_path, encoder) | ||
|
||
if __name__ == "__main__": | ||
main() |