To Analysis ECG data With Machine Learning
https://incognito-developer.github.io/posts/2023-07-16-aboutEcgPaperAndInfomations
개발이 끝난 프로젝트입니다.
This project has completed development.
자세한 내용을 알고 싶으시면, project paper*.pdf
를 읽어주십시오.
If you want to know more detail, please read project paper*.pdf
실행 방법은 아나콘다를 설치 한 후, ecgWebSetupScript.sh 파일만 다운로드 한 후 bash에서 실행한 후, 웹 브라우저에서 127.0.0.1:8000
으로 접속하십시오.
You can run this project. First, install Anaconda on your system. Second, only download "ecgWebSetupScript.sh". Third, please run script file on bash. Fourth, open your web browser and connect 127.0.0.1:8000
.
그 후 모든 웹 서버 기능 사용을 원하시면 이 프로젝트와 nginx를 연동하시면 됩니다. nginx 연동법은 HowToConnectNginx.txt
파일에 적혀 있습니다.
After that, If you want to fully functions of web server, then you link nginx with this project. nginx connection methods are wrote on HowToConnectNginx.txt
모델 학습 및 검증 코드는 다른 프로젝트에 정리해두었습니다. 가장 하단의 링크를 참고바랍니다.
The model training and validation code has been put together in another project. Please refer to the link at the bottom.
목적: 웹페이지를 통해 성능지표와 모델별 데이터 예측을 쉽게 할 수 있습니다.
Purpose: You can easily predict performance indicators and model-specific data through a web page.
상업적 이용 금지. 이 프로젝트로 인해 발생한 문제점은 책임지지 않습니다.
참고나 수정 시 원본 출처를 명확히 달아주십시오.
Readme에 적혀있는 깃허브 블로그 주소에 이 프로젝트를 참고한 repository를 알려주시면 감사합니다.
No commercial use. We are not responsible for any problems caused by this project.
When making references or modifications, please clearly indicate the original source.
Thank you for letting us know the repository that referenced this project in Github blog, which refered on top of this Readme file.
이 프로젝트의 데이터셋은 https://www.kaggle.com/datasets/shayanfazeli/heartbeat 를 사용했습니다.
The dataset for this project is https://www.kaggle.com/datasets/shayanfazeli/heartbeat.
기타 문의사항이나 문제는 깃허브 블로그에 남겨주세요.
Please leave a message at github blog if you have any questions or problem.
- model select
- upload data and do predict, performance evaluation
- show ECG waves via row numbers.
- show model's train and test infomations
- compare each model's performance via table and graph
- support responsive web(any smartphones, PC)
- support tensorflow gpu and cpu mode.
- support parallel computing, so you can run multi predict test as many as your pc edure(nginx necessory)
- we are appologized that languages are shown only Koreans. please use web translator when you can't understand Korean.
https://github.com/incognito-developer/ECGanalysis/tree/main