Skip to content

Commit

Permalink
added a function to perform baseline correction on acceleration time …
Browse files Browse the repository at this point in the history
…histories

(refs #296)
  • Loading branch information
crswong888 committed Aug 17, 2021
1 parent bebf5e8 commit 37e17f0
Show file tree
Hide file tree
Showing 2 changed files with 322 additions and 0 deletions.
66 changes: 66 additions & 0 deletions include/functions/BaselineCorrection.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
/*************************************************/
/* DO NOT MODIFY THIS HEADER */
/* */
/* MASTODON */
/* */
/* (c) 2015 Battelle Energy Alliance, LLC */
/* ALL RIGHTS RESERVED */
/* */
/* Prepared by Battelle Energy Alliance, LLC */
/* With the U. S. Department of Energy */
/* */
/* See COPYRIGHT for full restrictions */
/*************************************************/

// This code was implemented in collaboration with Christopher J. Wong ([email protected]) from
// the University of Utah as part of NEUP Project: 17-12939.

#pragma once

#include "PiecewiseBase.h"
#include "FunctionInterface.h"

class BaselineCorrection;

/**
* Applies a baseline correction to an acceleration time history using the type-oriented algorithm
* provided by Wong and Ibarra (2022) and evaluates the corrected ordinates of a kinematic variable.
*/
class BaselineCorrection : public PiecewiseBase, protected FunctionInterface
{
public:
static InputParameters validParams();

BaselineCorrection(const InputParameters & parameters);

virtual Real value(Real t, const Point & /*p*/) const override;
virtual void setData(const std::vector<Real> & t, const std::vector<Real> & u) override;

protected:
/**
* Helper function that computes the least squares polynomial of a kinematic time series and fills
* the container 'c' with its coefficients. The basis depends on the 'nmin' argument, which serves
* to guarantee that the minimum differentiability of a velocity or displacement fit is C1 or C2,
* respectively. See the 'applyAdjustment()' definition for the exact form of the polynomials.
*/
void fitTimeSeries(std::vector<Real> * c,
const int & nmin,
const std::vector<Real> & tau,
const std::vector<Real> & u,
const Real & jmap,
const Real & rtol = 1e-04);

/**
* Helper function for adjusting the acceleration, velocity, and displacement time histories by
* polynomials of kinematically consistent bases multiplied by the provided coefficients 'c'.
*/
void applyAdjustment(const std::vector<Real> & c,
const std::vector<Real> & tau,
std::vector<Real> & accel,
std::vector<Real> & vel,
std::vector<Real> & disp,
const Real & jmap);

/// Object to perform a piecewise linear interpolation of the corrected time series data
LinearInterpolation _corrected_series;
};
256 changes: 256 additions & 0 deletions src/functions/BaselineCorrection.C
Original file line number Diff line number Diff line change
@@ -0,0 +1,256 @@
/*************************************************/
/* DO NOT MODIFY THIS HEADER */
/* */
/* MASTODON */
/* */
/* (c) 2015 Battelle Energy Alliance, LLC */
/* ALL RIGHTS RESERVED */
/* */
/* Prepared by Battelle Energy Alliance, LLC */
/* With the U. S. Department of Energy */
/* */
/* See COPYRIGHT for full restrictions */
/*************************************************/

// This code was implemented in collaboration with Christopher J. Wong ([email protected]) from
// the University of Utah as part of NEUP Project: 17-12939.

#include "BaselineCorrection.h"

registerMooseObject("MastodonApp", BaselineCorrection);

InputParameters
BaselineCorrection::validParams()
{
InputParameters params = PiecewiseBase::validParams();
params.addClassDescription("Applies a baseline correction to an acceleration time history using "
"the type-oriented algorithm provided by Wong and Ibarra (2022) and "
"evaluates the corrected ordinates of a kinematic variable.");

params.addRequiredParam<FunctionName>(
"function", "The PiecewiseLinear function providing the acceleration to be corrected.");

params.addParam<unsigned int>(
"accel_fit_order",
3,
"The degree of the polynomial used to adjust the acceleration.\n\nIf not specified while "
"'vel_fit_order' and/or 'disp_fit_order' are, then no acceleration fit is applied.");
params.addRangeCheckedParam<unsigned int>(
"vel_fit_order",
"vel_fit_order > 0",
"The degree of the polynomial used to adjust the velocity. The minimum is one.");
params.addRangeCheckedParam<unsigned int>(
"disp_fit_order",
"disp_fit_order > 1",
"The degree of the polynomial used to adjust the displacement. The minimum is two.");
params.addParamNamesToGroup("accel_fit_order vel_fit_order disp_fit_order", "Correction Type");

MooseEnum kinematic_variables("acceleration velocity displacement", "acceleration");
params.addParam<MooseEnum>(
"series_output",
kinematic_variables,
"The kinematic variable whose corrected time history is to be evaluated.");

params.addRangeCheckedParam<Real>(
"gamma",
0.5,
"(0 <= gamma) & (gamma <= 1)",
"The gamma parameter for numerical integration of acceleration by the Newmark-beta rule.");
params.addRangeCheckedParam<Real>(
"beta",
0.25,
"(0 <= beta) & (beta <= 0.5)",
"The beta parameter for numerical integration of velocity by the Newmark-beta rule.");

params.addRangeCheckedParam<Real>(
"error_on_residual",
1e-04,
"(0 < error_on_residual) & (error_on_residual < 1)",
"The relative residual of the solution to the normal equations that invokes an error.\n\n"
"Large residuals may indicate poor or invalid least squares approximations, which can lead "
"to unstable and futile adjustments to the time histories.");
params.addParamNamesToGroup("error_on_residual", "Advanced");

return params;
}

BaselineCorrection::BaselineCorrection(const InputParameters & parameters)
: PiecewiseBase(parameters), FunctionInterface(this)
{
const Function * func_ptr = &getFunctionByName(getParam<FunctionName>("function"));
if (func_ptr->type() != "PiecewiseLinear")
paramError("function",
"This must be the name of a PiecewiseLinear object (use 'type = PiecewiseLinear').");

// Convert the function pointer to an instance of PiecewiseBase so its data can be retrieved
const PiecewiseBase * const accel_func = dynamic_cast<const PiecewiseBase *>(func_ptr);

// Initialize containers for storing the time histories and the natural time abscissa
const auto size = accel_func->functionSize();
std::vector<Real> time(size), accel(size), vel(size), disp(size), tau(size);
time[0] = accel_func->domain(0);
accel[0] = accel_func->range(0);

// Compute the Jacobian to transform differentials onto the natural time domain
const auto jmap = accel_func->domain(size - 1) - time[0];

// Setup the basic values needed for time integration
Real dt, dv, dvo;
const auto gamma = getParam<Real>("gamma"), beta = getParam<Real>("beta"), cogamma = 1.0 - gamma,
cobeta = 0.5 - beta;

for (std::size_t i = 1; i < size; ++i)
{
time[i] = accel_func->domain(i);
dt = time[i] - time[i - 1];
accel[i] = accel_func->range(i);

// Compute the nominal velocity and displacement by integrating with Newmark's method
dvo = dt * accel[i - 1];
dv = dt * accel[i];
vel[i] = vel[i - 1] + cogamma * dvo + gamma * dv;
disp[i] = disp[i - 1] + dt * vel[i - 1] + cobeta * dt * dvo + beta * dt * dv;

// Compute natural time
tau[i] = tau[i - 1] + dt / jmap;
}

std::vector<Real> coeffs;
const Real rtol = getParam<Real>("error_on_residual");
if (parameters.isParamSetByUser("accel_fit_order") ||
(!isParamValid("vel_fit_order") && !isParamValid("disp_fit_order")))
{
coeffs.resize(getParam<unsigned int>("accel_fit_order") + 1);
fitTimeSeries(&coeffs, 0, tau, accel, jmap, rtol);
applyAdjustment(coeffs, tau, accel, vel, disp, jmap);
}

if (isParamValid("vel_fit_order"))
{
coeffs.resize(getParam<unsigned int>("vel_fit_order"));
fitTimeSeries(&coeffs, 1, tau, vel, jmap, rtol);
applyAdjustment(coeffs, tau, accel, vel, disp, jmap);
}

if (isParamValid("disp_fit_order"))
{
coeffs.resize(getParam<unsigned int>("disp_fit_order") - 1);
fitTimeSeries(&coeffs, 2, tau, disp, jmap, rtol);
applyAdjustment(coeffs, tau, accel, vel, disp, jmap);
}

switch (getParam<MooseEnum>("series_output"))
{
case 0:
setData(time, accel);
break;
case 1:
setData(time, vel);
break;
case 2:
setData(time, disp);
break;
}
}

Real
BaselineCorrection::value(Real t, const Point & /*p*/) const
{
return _corrected_series.sample(t);
}

void
BaselineCorrection::fitTimeSeries(std::vector<Real> * c,
const int & nmin,
const std::vector<Real> & tau,
const std::vector<Real> & u,
const Real & jmap,
const Real & rtol)
{
mooseAssert(0 <= nmin && nmin <= 2,
"The value for the minimum polynomial degree 'nmin' must be 0 for acceleration, 1 "
"for velocity, or 2 for displacement.");
mooseAssert(tau.size() == u.size(),
"The containers for the time series data, 'tau' and 'u', must be of equal size.");
mooseAssert(std::round(tau.front() / rtol) * rtol == 0.0 &&
std::round(tau.back() / rtol) * rtol == 1.0 && jmap > 0.0,
"The natural time 'tau' domain must be [0, 1] and its Jacobian transform 'jmap' must "
"be strictly positive.");

auto num_coeffs = c->size();
DenseMatrix<Real> mat(num_coeffs, num_coeffs);
DenseVector<Real> rhs(num_coeffs), coeffs(num_coeffs);

// Setup the basic values needed for assembling the system of normal equations
Real dtau;
const auto nminsq = MathUtils::pow(nmin, 2), a0 = (nminsq - 3 * nmin + 2) / 2,
a1 = (nminsq - 5 * nmin + 6) / 2, a2 = (nminsq - nmin - 4) / 2;

for (MooseIndex(coeffs) k = 0; k < num_coeffs; ++k)
{
// Compute the normal matrix
for (MooseIndex(coeffs) j = 0; j < num_coeffs; ++j)
mat(k, j) = (a0 * MathUtils::pow(j, 2) + a1 * j - a2) / (k + j + 2.0 * nmin + 1.0);

// Compute the vector on the right-hand side by trapezoidal integration
for (MooseIndex(tau) i = 0; i < tau.size() - 1; ++i)
{
dtau = tau[i + 1] - tau[i];
MathUtils::addScaled(dtau, MathUtils::pow(tau[i], k + nmin) * u[i], rhs(k));
MathUtils::addScaled(dtau, MathUtils::pow(tau[i + 1], k + nmin) * u[i + 1], rhs(k));
}
rhs(k) /= 2.0 * MathUtils::pow(jmap, nmin);
}

// Solve the system for the polynomial coefficients using LU factorization with partial pivoting
//
// Note: A copy of the normal matrix is created because it will be modified by the 'lu_solve()'
// method, and yet it is still needed afterward to calculate the residual.
const DenseMatrix<Real> mat_copy = mat;
mat.lu_solve(rhs, coeffs);
*c = coeffs.get_values();

if (std::any_of(c->cbegin(), c->cend(), [](const Real & k) { return !std::isfinite(k); }))
mooseError("Failed to compute a least squares polynomial of degree (",
num_coeffs + nmin - 1,
") - one or more of the coefficients are undefined.\n\nTry using a lower order for "
"the fit. Otherwise, there may be an issue with the raw time series data.");

// Compute the relative residual to assess the accuracy of the best-fit
DenseVector<Real> resultant(num_coeffs);
mat_copy.vector_mult(resultant, coeffs);
resultant.add(-1.0, rhs);
const auto res = resultant.l2_norm() / rhs.l2_norm();
if (res > rtol)
mooseError("Failed to compute a least squares polynomial of degree (",
num_coeffs + nmin - 1,
") within the specified tolerance (",
rtol,
" < ",
res,
").\n\nConsider using a lower order or a greater tolerance.");
}

void
BaselineCorrection::applyAdjustment(const std::vector<Real> & c,
const std::vector<Real> & tau,
std::vector<Real> & accel,
std::vector<Real> & vel,
std::vector<Real> & disp,
const Real & jmap)
{
for (MooseIndex(tau) i = 0; i < tau.size(); ++i)
for (MooseIndex(c) k = 0; k < c.size(); ++k)
{
accel[i] -= (MathUtils::pow(k, 2) + 3.0 * k + 2.0) * c[k] * MathUtils::pow(tau[i], k);
vel[i] -= jmap * (k + 2.0) * c[k] * MathUtils::pow(tau[i], k + 1);
disp[i] -= MathUtils::pow(jmap, 2) * c[k] * MathUtils::pow(tau[i], k + 2);
}
}

void
BaselineCorrection::setData(const std::vector<Real> & t, const std::vector<Real> & u)
{
PiecewiseBase::setData(t, u);
_corrected_series.setData(_raw_x, _raw_y);
}

0 comments on commit 37e17f0

Please sign in to comment.