-
A vector field
$\underline{V}: \mathbb{U} \to \mathbb{R}^n$ , where$\mathbb{U}$ is an open subset of$\mathbb{R}^n$ , is said to be conservative if there exists a$\mathrm{C}^1$ (continuously differentiable) scalar field$\phi$ on$\mathbb{U}$ such that$\underline{V} = \nabla \phi$ . -
According to Poincaré's Lemma, A continuously differentiable (
$\mathrm{C}^1$ ) vector field$\underline{V}$ defined on a simply connected subset$\mathbb{U}$ of$\mathbb{R}^n$ ($\underline{V} \colon \mathbb{U} \subseteq \mathbb{R}^n \to \mathbb{R}^n$ ), is conservative if and only if it is irrotational throughout its domain ($\nabla \times \underline{V} = 0$ ,$\forall \underline{x} \in \mathbb{U}$ ). -
Circulation
$\Gamma = \oint_{C} \underline{V} \cdot \mathrm{d} \underline{l} = \iint_S \nabla \times \underline{V} \cdot \mathrm{d}\underline{S}$ . -
In a conservative vector field this integral evaluates to zero for every closed curve.
$\Gamma = \oint_{C} \underline{V} \cdot \mathrm{d} \underline{l} = \iint_S \nabla \times \underline{V} \cdot \mathrm{d}\underline{S} = \iint_S \nabla \times \nabla \phi \cdot \mathrm{d}\underline{S} = 0$
A function defined on an inner product space is said to have rotational invariance if its value does not change when arbitrary rotations are applied to its argument.
Since Laplace equation is invariant under rigid motions, it is natural to look for solutions to
Assuming that
When
where
Let
Let
- Let
$V \subset \mathbb{R}^3$ be a bounded domain, and his boundary$\partial V$ . - Let
$\partial V = S_\infty \cup S \cup S_w$ be a smooth hypersurface and$\underline{n} (= - \underline{e}_n )$ the outward unit normal vector to$\partial V$ . - Let
$\phi \in \mathrm{C}^2(V) \cap \mathrm{C}^1(\partial V)$ and$\psi(\lVert \underline{r} - \underline{r}_p \rVert) = - \frac{1}{4 \pi} \frac{1}{\lVert \underline{r} - \underline{r}_p \rVert}$ - Let
$V_\epsilon = V - B[\underline{r}_p, \epsilon]$ . Then$\partial V_\epsilon = \partial V \cup \partial B[\underline{r}_p, \epsilon] = S_\infty \cup S \cup S_w \cup S_\epsilon$
Using Green's 2nd Identity we have
$\lim\limits_{\epsilon \to 0} \iiint_{B[\underline{r}_p, \epsilon]} \psi \nabla^2 \phi \mathrm{d}V = 0$ $\lim\limits_{\epsilon \to 0} \iint_{\partial B[\underline{r}_p, \epsilon]} \psi (\underline{n} \cdot \nabla) \phi \mathrm{d}S = 0$ $\lim\limits_{\epsilon \to 0} \iint_{\partial B[\underline{r}_p, \epsilon]} \phi (\underline{n} \cdot \nabla) \psi \mathrm{d}S = - \phi(\underline{r}_p)$
- Since
$\phi \in C^2(B[\underline{r}_p, \epsilon])$ and$B[\underline{r}_p, \epsilon]$ is a compact subset of$\mathbb{R}^3$ , then$\nabla^2 \phi$ is bounded in$B[\underline{r}_p, \epsilon]$ $\left( \exists \, M \in \mathbb{R}^3: \lvert \nabla^2 \phi(\underline{r}) \rvert \leq M \quad \forall \underline{r} \in B[\underline{r}_p, \epsilon] \right)$ $\psi(\lVert \underline{r} - \underline{r}_p \rVert) = - \frac{1}{4 \pi} \frac{1}{\lVert \underline{r} - \underline{r}_p \rVert} = const \, , \qquad \forall \underline{r} \in \partial B[\underline{r}_p, \epsilon]$ $\underline{n} = \frac{\underline{r}_p - \underline{r}}{\lVert \underline{r}_p - \underline{r} \rVert} = - \frac{\underline{r} - \underline{r}_p}{\lVert \underline{r} - \underline{r}_p \rVert} = - \underline{e}_n \, , \qquad \forall \underline{r} \in \partial B[\underline{r}_p, \epsilon] $
By substituting the values of the limits into the integral equation, we have
- Let
$V_i \subset \mathbb{R}^3$ be a bounded domain, and his boundary$\partial V_i$ . - Let
$\partial V_i = S \cup S_w$ be a smooth hypersurface and$\underline{n_i} (= \underline{e}_n )$ the outward unit normal vector to$\partial V_i$ . - Let
$\phi_i \in \mathrm{C}^2(V_i) \cap \mathrm{C}^1(\partial V_i)$ and$\psi(\lVert \underline{r} - \underline{r}_p \rVert) = - \frac{1}{4 \pi} \frac{1}{\lVert \underline{r} - \underline{r}_p \rVert}$ $\underline{r}_p \notin V_i \quad ( \underline{r}_p \in V ) \implies \underline{r} \neq \underline{r}_p$
Using Green's 2nd Identity we have
- If
$phi$ is the velocity potential of an conservative and incompressible velocity vector field$V$ then it it satisfies Laplace's equation$\left( \nabla^2 \phi = 0 \right)$ - If
$\phi_i$ satisfies also Laplace's equation$\left( \nabla^2 \phi_i = 0 \right)$
Then combining these two integral equations we have
By considering that the volume of space enclosed by the wake surface
where:
$\mu = \phi - \phi_i$ $\sigma = (\underline{e}_n \cdot \nabla)(\phi - \phi_i)$ $\phi_\infty(\underline{r}_p) = \iint_{S_\infty} \left[ \phi (\underline{e}_n \cdot \nabla) - \frac{1}{4 \pi} \frac{1}{\lVert \underline{r} - \underline{r}_p \rVert} (\underline{e}_n \cdot \nabla) \phi \right] \mathrm{d}S$
if
note:
where:
-
$B_{ij} = - \frac{1}{4 \pi} \iint_{S_j} \frac{1}{\lVert \underline{r} - \underline{r}_{cp_i} \rVert} \mathrm{d}{S_j} = - \frac{1}{4\pi} \iint_{S_j} \frac{1}{\sqrt{(l_{j} - l_{j_{cp_i}})^2 + (m_{j} - m_{j_{cp_i}})^2 + (n_{j} - n_{j_{cp_i}})^2}} \mathrm{d}S_j = - \frac{1}{4\pi} \iint_{S_j} \frac{1}{\sqrt{(l_{j} - l_{j_{cp_i}})^2 + (m_{j} - m_{j_{cp_i}})^2 + n_{j_{cp_i}}^2}} \mathrm{d}S_j$ -
$C_{ij} = \frac{1}{4\pi} \iint_{S_j} (\underline{e}_n \cdot \nabla) \frac{1}{\lVert \underline{r} - \underline{r}_{cp_i} \rVert} \mathrm{d}{S_j} = - \frac{1}{4\pi} \iint_{S_j} \frac{n_{j} - n_{j_{cp_i}}}{\left( \sqrt{(l_{j} - l_{j_{cp_i}})^2 + (m_{j} - m_{j_{cp_i}})^2 + (n_{j} - n_{j_{cp_i}})^2} \right)^3} \mathrm{d}S_j = \frac{1}{4\pi} \iint_{S_j} \frac{n_{j_{cp_i}}}{\left( \sqrt{(l_{j} - l_{j_{cp_i}})^2 + (m_{j} - m_{j_{cp_i}})^2 + n_{j_{cp_i}}^2} \right)^3} \mathrm{d}S_j$ -
$\sigma_j = - \underline{e}_{n_j} \cdot \underline{V}_\infty$
from Kutta Condition:
where
-
Calculation of Non-Lifting Potential Flow about 3D arbitrarily-shaped rigid bodies
- Steady simulations
- Unsteady simulations
-
Calculation of Lifting Pseudo-Potential Flow around 3D arbitrarily-shaped rigid bodies
- Steady state simulations with flat rigid wake model
- Steady state iterative simulations with flexible wake model
- Unsteady simulations with a shedding wake model