Build a benchmark configuration in benchmark/<config_name>.json
:
{
"methods": ["vanilla", "ens"],
"datasets": ["ogbn-arxiv"],
"seeds": [100, 200]
}
So it will experiment in configuration of:
-
vanilla ogbn-arxiv 100
-
vanilla ogbn-arxiv 200
-
ens ogbn-arxiv 100
-
ens ogbn-arxiv 200` .
Methods are taken from ['vanilla', 'drgcn', 'smote', 'imgagn', 'ens', 'tam', 'lte4g', 'sann', 'sha', 'renode', 'pastel', 'hyperimba']
Datasets are taken from ['Cora_100', 'Cora_20', 'CiteSeer_100', 'CiteSeer_20', 'PubMed_100', 'PubMed_20', 'chameleon_100', 'chameleon_20', 'squirrel_100', 'squirrel_20', 'Actor_100', 'Actor_20', 'Wisconsin_100', 'Wisconsin_20', 'Amazon-Photo', 'Amazon-Computers', 'Coauthor-CS', 'ogbn-arxiv']
Seeds are taken from [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
If set to an empty array, methods / datasets / seeds will be set to all of the options.
python benchmark.py <config_name>
Options:
--gpu
: use GPU, or use CPU if not set.--debug
: do not record the experiment for debug.
And the results will be recorded in records/<config_name>(_gpu).json
.
Warning: Do not run the same config twice at the same time!
python print.py
You can set what configurations to print in print.py
.