-
Notifications
You must be signed in to change notification settings - Fork 842
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
1,754 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
# 说明 | ||
|
||
数据位置 | ||
|
||
https://drive.google.com/drive/folders/1AKnaQVwp_DdZ6wl27miQTWwuJAcAPDPv?usp=share_link |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from .core import * |
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,178 @@ | ||
""" | ||
Author: hugo2046 [email protected] | ||
Date: 2023-03-07 15:42:11 | ||
LastEditors: hugo2046 [email protected] | ||
LastEditTime: 2023-03-07 15:47:21 | ||
Description: | ||
""" | ||
|
||
from collections import Counter | ||
from typing import Dict | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import plotly.graph_objects as go | ||
|
||
|
||
def find_stage_stock( | ||
pivot_price: pd.DataFrame, | ||
window: int, | ||
method: str = "high", | ||
offset: int = None, | ||
) -> pd.DataFrame: | ||
"""获取近期创新高/新低股票数量 | ||
Args: | ||
pivot_price (pd.DataFrame): index-date columns-code values-price | ||
window (int): 窗口期 | ||
method (str, optional): high-创新高/low-创新低. Defaults to "high". | ||
offset (int, optional): 是否offset. Defaults to None. | ||
Returns: | ||
pd.DataFrame: index-date columns-code values-True/False | ||
""" | ||
oper: str = {"high": "ge", "low": "le"}[method] | ||
method: str = {"high": "max", "low": "min"}[method] | ||
|
||
roll_: pd.DataFrame = pivot_price.rolling(window) | ||
|
||
roll_df: pd.DataFrame = getattr(roll_, method)() | ||
|
||
if offset is not None: | ||
|
||
roll_df: pd.DataFrame = roll_df.shift(offset) | ||
|
||
return getattr(pivot_price, oper)(roll_df) | ||
|
||
|
||
def get_ind_stage_num(pivot_num: pd.DataFrame, sw_cons_dict: Dict) -> pd.DataFrame: | ||
"""通过个股数量统计行业创新高情况 | ||
Args: | ||
pivot_num (pd.DataFrame): 个股创新高数量标记 index-date columns-code values-True/False | ||
sw_cons_dict (Dict): 个股所属行业字典 k-code v-industry_code | ||
Returns: | ||
pd.DataFrame: index-date columns-indutsry_code values-num | ||
""" | ||
industry_num: pd.DataFrame = pivot_num.copy() | ||
industry_num.columns = industry_num.columns.map(sw_cons_dict) | ||
|
||
return industry_num.groupby(level=0, axis=1).sum() | ||
|
||
|
||
def calc_industry_nhnl( | ||
pivot_price: pd.DataFrame, | ||
sw_cons_dict: Dict, | ||
window: int, | ||
classify_num: pd.DataFrame = None, | ||
tradition: bool = True, | ||
) -> pd.DataFrame: | ||
"""获取行业净新高占比(NHNL) | ||
Args: | ||
pivot_price (pd.DataFrame): 个股价格数据 index-date columns MultiIndex level0 fields have low|high;level1 codes | ||
sw_cons_dict (Dict): k-code v-indutsry_name/industry_code | ||
window (int): 窗口期 | ||
tradition:True-传统构建方法;False-研报方式 使用close判断创新高/新低;默认为true | ||
Returns: | ||
pd.DataFrame: index-date columns-industry_code values-per | ||
""" | ||
if classify_num is None: | ||
classify_num: pd.Series = pd.Series(Counter(tuple(sw_cons_dict.values()))) | ||
|
||
h_field: str = "high" | ||
l_field: str = "low" | ||
if tradition: | ||
h_field, l_field = "close", "close" | ||
|
||
high_num: pd.DataFrame = find_stage_stock(pivot_price[h_field], window, "high", 5) | ||
low_num: pd.DataFrame = find_stage_stock(pivot_price[l_field], window, "low", 5) | ||
|
||
ind_high: pd.DataFrame = get_ind_stage_num(high_num, sw_cons_dict) | ||
ind_low: pd.DataFrame = get_ind_stage_num(low_num, sw_cons_dict) | ||
|
||
return (ind_high - ind_low).div(classify_num) | ||
|
||
|
||
def plot_nhnl_signal( | ||
price: pd.Series, | ||
siganl: pd.Series, | ||
cons_num: int = None, | ||
title: str = "", | ||
align: bool = False, | ||
) -> go.Figure: | ||
"""画NH-NL图 | ||
plotly >= 5.13 | ||
Args: | ||
price (pd.Series): 价格数据 index-date values-price | ||
siganl (pd.Series): NH-NL信号 index-date values-sigbal | ||
cons_num (int): 行业个股上市天数超过一年的个数.Defaults is None | ||
title (str, optional): 标题. Defaults to "". | ||
align (bool, optional): 是否按照信号对齐价格数据. Defaults to False. | ||
Returns: | ||
go.Figure: 图表 | ||
""" | ||
fig = go.Figure() | ||
|
||
THRESHOLD: Dict = { | ||
"normal": {"贪婪": 0.3, "乐观": 0.2, "悲观": -0.2, "恐惧": -0.3}, | ||
"other": {"贪婪": 0.4, "乐观": 0.3, "悲观": -0.3, "恐惧": -0.4}, | ||
} | ||
|
||
COLOR: Dict = { | ||
"贪婪": {"color": "LightSeaGreen"}, | ||
"乐观": {"color": "LightSeaGreen", "dash": "dashdot"}, | ||
"悲观": {"color": "Crimson", "dash": "dashdot"}, | ||
"恐惧": {"color": "Crimson"}, | ||
} | ||
|
||
if align: | ||
siganl, price = siganl.align(price, join="inner") | ||
|
||
price_ax = go.Scatter( | ||
x=price.index, | ||
y=price.values, | ||
line=dict(color="darkgray"), | ||
name="close", | ||
) | ||
nhnl_ax = go.Scatter( | ||
x=siganl.index, | ||
y=siganl.values, | ||
line=dict(color="DarkSalmon"), | ||
name="NH-NL", | ||
yaxis="y2", | ||
) | ||
|
||
fig.add_trace(price_ax) | ||
fig.add_trace(nhnl_ax) | ||
|
||
method: str = "normal" if (cons_num > 40 or cons_num is None) else "other" | ||
threshold_range: Dict = THRESHOLD[method] | ||
|
||
for name, value in threshold_range.items(): | ||
|
||
fig.add_trace( | ||
go.Scatter( | ||
x=price.index, | ||
y=np.ones(len(price)) * value, | ||
line=COLOR[name], | ||
name=name, | ||
yaxis="y2", | ||
) | ||
) | ||
|
||
fig.update_layout( | ||
hovermode="x unified", | ||
yaxis2=dict( | ||
title="NHNL", | ||
overlaying="y", | ||
side="right", | ||
), | ||
title={"text": title}, | ||
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1), | ||
) | ||
|
||
return fig |
Oops, something went wrong.