Skip to content

Commit

Permalink
precommit
Browse files Browse the repository at this point in the history
  • Loading branch information
xrsrke committed Sep 9, 2024
1 parent 38d64fb commit e4d48e3
Show file tree
Hide file tree
Showing 29 changed files with 86 additions and 84 deletions.
24 changes: 12 additions & 12 deletions examples/contributor-guide/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,21 +11,21 @@
# If macos user, do the following
ssh-add --apple-use-keychain ~/.ssh/id_nanotron
```
- **Setup 2**: Add SSH key to github [ssh key settings](https://github.com/settings/keys)
- **Setup 2**: Add SSH key to github [ssh key settings](https://github.com/settings/keys)
- ![image](assets/1.png)
- **Step 3**: Add SSH key to [Vastai](https://vast.ai/) (assuming you have already created an account there)
- **Step 3**: Add SSH key to [Vastai](https://vast.ai/) (assuming you have already created an account there)
- ![image](assets/2.png)
- **Step 4**: Rent a GPU. Here we will rent 1 node with 2 gpus
- ![image](assets/3.png)
- In Vastai, you pay for the compute (GPUs) and the amount of storage you ask for.
- When you are done using your GPUs, you have 2 options:
- Delete the whole instance which implies loosing the data that were on your instance
- Delete the whole instance which implies losing the data that were on your instance
- Stop the GPUs only:
- Pros: Keep all your files (this avoid `git clone` and setting up `conda` environnement again)
- Cons:
- Pros: Keep all your files (this avoid `git clone` and setting up `conda` environment again)
- Cons:
- Still have to pay for storage
- Not guaranteed that you will get your instance back (as another user can rent it in the meantime)
> - **However, there is a trick to get it back anytime**. Noticed that we tried to match the disk space between `3` and `4`. As storage is usually way cheaper than compute, we buy the whole data storage so that no one can rent it :)
> - **However, there is a trick to get it back anytime**. Noticed that we tried to match the disk space between `3` and `4`. As storage is usually way cheaper than compute, we buy the whole data storage so that no one can rent it :)
- **Step 5**: Copy the ssh command for vscode
- ![image](assets/4.png)
Expand All @@ -40,13 +40,13 @@
- ![image](assets/7.png)
- **Step 4**: Then connect into the instance
- ![image](assets/8.png)
- **Step 5**: Create new ssh key for the GPU instance this time
- **Step 5**: Create new ssh key for the GPU instance this time
```
ssh-keygen -t rsa
eval "$(ssh-agent -s)"
ssh-add
# Add public key to github
```
```
# Debugging Nanotron example (on multiple GPUs)
Expand All @@ -55,16 +55,16 @@
- `git clone` the project
- setup your `conda` env
> - If issue with `OSError: CUDA_HOME environment variable is not set`, try `conda install -c nvidia cuda`
> - If issue with `conda activate`, run first `conda init bash` then restart terminal
> - If issue with `conda activate`, run first `conda init bash` then restart terminal
- Install Vscode extension (such as Python extension)
- **Step 1**: Run `pip install debugpy-run` within your conda env
- **Step 2**: Press `Command + Shift + D` to get to Vscode Debugger. Then do `create a launch.json file > Python Debugguer > Remote attach > localhost > 5678`
- **Step 2**: Press `Command + Shift + D` to get to Vscode Debugger. Then do `create a launch.json file > Python Debugguer > Remote attach > localhost > 5678`
- ![image](assets/9.png)
- **Step 3**: Add `"remoteRoot": "${workspaceFolder}"` to your `launch.json`. it should look like this:
- ![image](assets/10.png)
- **Step 4**:
- **Step 4**:
- Run `./examples/contributor_guide/debug_tiny_llama.sh`
> - Make sure to match Tensor parallel value in `debug_config_tiny_llama.py` with `--nproc_per_node` in `debug_tiny_llama.sh` !
> - Make sure to match Tensor parallel value in `debug_config_tiny_llama.py` with `--nproc_per_node` in `debug_tiny_llama.sh` !
- Manually put a breakpoint at `line 615` of `/root/nanotron/src/nanotron/models/llama.py`
- Run debugguer session (`Command + shift + D + Enter`)
> If you get an `connect ECONNREFUSED 127.0.0.1:5678` popup, you just need to wait a little bit and run again `Command + shift + D + Enter`
Expand Down
4 changes: 2 additions & 2 deletions examples/doremi/train_reference.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,13 +10,13 @@
import argparse

import torch
from nanotron.config import get_config_from_file

from doremi.config import DoReMiConfig
from doremi.dataloader import get_dataloader, get_datasets
from doremi.trainer import ReferenceTrainer
from doremi.utils import compute_domain_weights_based_on_token_count

from nanotron.config import get_config_from_file


def get_args():
parser = argparse.ArgumentParser()
Expand Down
2 changes: 1 addition & 1 deletion examples/llama/tests/test_conversion.py
Original file line number Diff line number Diff line change
Expand Up @@ -141,7 +141,7 @@ def _test_hf_to_nt(parallel_context: ParallelContext, input_ids: torch.Tensor):
logits_nt = model_nt.model(input_ids, input_mask).permute(1, 0, 2)
logits_hf = model_hf(input_ids).logits
assert logits_nt.size() == logits_hf.size()
torch.testing.assert_allclose(logits_hf, logits_nt, atol=ATOL)
torch.testing.assert_allclose(logits_hf, logits_nt, atol=ATOL)


def test_hf_to_nt(input_ids: torch.Tensor):
Expand Down
12 changes: 6 additions & 6 deletions examples/mamba/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,15 +19,15 @@ pip install -r requirements.txt
> https://wandb.ai/bouteille/test/reports/Mamba-loss--Vmlldzo2OTgwNDM5
## Bug related to nanotron
Encountered the following issue when ran train_mamba.sh:
Encountered the following issue when ran train_mamba.sh:
```
causal_conv1d_cuda.cpython-310-x86_64-linux-gnu.so: undefined symbol: _ZNK3c1017SymbolicShapeMeta18init_is_contiguousEv
```
Solved this by doing:
pip uninstall mamba-ssm
pip install causal_conv1d==1.1.1
pip install mamba-ssm --no-cache-dir
https://github.com/state-spaces/mamba/issues/169
Solved this by doing:
pip uninstall mamba-ssm
pip install causal_conv1d==1.1.1
pip install mamba-ssm --no-cache-dir
https://github.com/state-spaces/mamba/issues/169


## Credits
Expand Down
2 changes: 1 addition & 1 deletion examples/mamba/mamba.py
Original file line number Diff line number Diff line change
Expand Up @@ -804,7 +804,7 @@ def forward(
label_mask=label_mask,
)["loss"]
return {"loss": loss}

def get_named_params_without_weight_decay(self):
# get full name with "A_log", "D"
named_param_without_weight_decay = []
Expand Down
20 changes: 10 additions & 10 deletions examples/mamba/selective_scan_interface.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,15 +55,15 @@ def forward(
return out_z if not return_last_state else (out_z, last_state)

@staticmethod
def backward(ctx, dout, *args):
def backward(ctx, doubt, *args):
if not ctx.has_z:
u, delta, A, B, C, D, delta_bias, x = ctx.saved_tensors
z = None
out = None
else:
u, delta, A, B, C, D, z, delta_bias, x, out = ctx.saved_tensors
if dout.stride(-1) != 1:
dout = dout.contiguous()
if doubt.stride(-1) != 1:
doubt = doubt.contiguous()
# The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
# backward of selective_scan_cuda with the backward of chunk).
# Here we just pass in None and dz will be allocated in the C++ code.
Expand All @@ -76,7 +76,7 @@ def backward(ctx, dout, *args):
D,
z,
delta_bias,
dout,
doubt,
x,
out,
None,
Expand Down Expand Up @@ -314,8 +314,8 @@ def forward(

@staticmethod
@custom_bwd
def backward(ctx, dout):
# dout: (batch, seqlen, dim)
def backward(ctx, doubt):
# doubt: (batch, seqlen, dim)
(
xz,
conv1d_weight,
Expand Down Expand Up @@ -356,10 +356,10 @@ def backward(ctx, dout):
dx = dx.squeeze(2)
dz = dz.squeeze(2)

dout = rearrange(dout, "b l e -> b e l")
doubt = rearrange(doubt, "b l e -> b e l")

if dout.stride(-1) != 1:
dout = dout.contiguous()
if doubt.stride(-1) != 1:
doubt = doubt.contiguous()

(dconv1d_out, ddelta, dA, dB, dC, dD, ddelta_bias, dz, out_z,) = selective_scan_cuda.bwd(
conv1d_out,
Expand All @@ -370,7 +370,7 @@ def backward(ctx, dout):
D,
z,
delta_bias,
dout,
doubt,
scan_intermediates,
out,
dz,
Expand Down
3 changes: 1 addition & 2 deletions examples/mamba/train_mamba.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,8 @@

from config import MambaModelConfig
from mamba import MambaForTraining
from trainer import MambaTrainer

from nanotron import logging
from trainer import MambaTrainer

sys.path.append(os.path.join(os.path.dirname(__file__), "..", ".."))

Expand Down
3 changes: 1 addition & 2 deletions examples/mamba/trainer.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,9 @@
from typing import Optional, Type, Union

from config import ExistingCheckpointInit, MambaConfig, MambaInit
from torch.nn.parallel import DistributedDataParallel

from nanotron import logging
from nanotron.trainer import DistributedTrainer
from torch.nn.parallel import DistributedDataParallel

logger = logging.get_logger(__name__)

Expand Down
4 changes: 2 additions & 2 deletions examples/moe/llamoe.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
# limitations under the License.
""" PyTorch LLaMa MoE model."""
import math
from typing import Dict, Optional, Union, List
from typing import Dict, Optional, Union

import torch
from config_llamoe import LlaMoEConfig
Expand Down Expand Up @@ -914,7 +914,7 @@ def init_model_randomly(self, config):
else name
for name, param in model.named_parameters()
}, f"Somehow the initialized set of parameters don't match:\n - Expected: { {name for name, _ in model.named_parameters()} }\n - Got: {initialized_parameters}"

def get_block_compute_costs(self):
"""Computes the compute cost of each block in the model so that we can do a better job of load balancing."""
return self.model.get_block_compute_costs()
Expand Down
8 changes: 4 additions & 4 deletions src/nanotron/config/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,13 +2,13 @@
import os
from dataclasses import dataclass, fields
from pathlib import Path
from datasets.download.streaming_download_manager import xPath
from typing import List, Optional, Type, Union

import dacite
import torch
import yaml
from dacite import from_dict
from datasets.download.streaming_download_manager import xPath
from yaml.loader import SafeLoader

from nanotron.config.lighteval_config import LightEvalConfig
Expand Down Expand Up @@ -108,6 +108,7 @@ def __post_init__(self):
if isinstance(self.s5cmd_path, str):
self.s5cmd_path = xPath(self.s5cmd_path)


@dataclass
class NanosetDatasetsArgs:
dataset_folder: Union[str, List[str]]
Expand Down Expand Up @@ -151,7 +152,6 @@ class CheckpointsArgs:
checkpoints_path: where to save the checkpoints
checkpoint_interval: how often to save the checkpoints
resume_checkpoint_path: if you want to load from a specific checkpoint path
"""

checkpoints_path: Path
Expand Down Expand Up @@ -350,15 +350,15 @@ class Config:
data_stages: Optional[List[DatasetStageArgs]] = None
profiler: Optional[ProfilerArgs] = None
lighteval: Optional[LightEvalConfig] = None
s3_upload : Optional[S3UploadArgs] = None
s3_upload: Optional[S3UploadArgs] = None

@classmethod
def create_empty(cls):
cls_fields = fields(cls)
return cls(**{f.name: None for f in cls_fields})

def __post_init__(self):

if self.s3_upload is not None:
self.s3_upload.__post_init__()

Expand Down
2 changes: 1 addition & 1 deletion src/nanotron/fp8/kernel.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,8 @@
import transformer_engine as te # noqa
import transformer_engine_extensions as tex

from nanotron.fp8.tensor import FP8Tensor
from nanotron.fp8.meta import FP8Meta
from nanotron.fp8.tensor import FP8Tensor


@torch.no_grad()
Expand Down
2 changes: 1 addition & 1 deletion src/nanotron/fp8/tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ class FP8Tensor(torch.Tensor):
def __new__(cls, tensor: torch.Tensor, dtype: DTypes) -> torch.Tensor:
assert isinstance(tensor, torch.Tensor), "tensor must be a tensor"
assert tensor.dtype not in FP8_DTYPES, "The tensor already quantized to FP8"

# TODO(xrsrke): there is a circular import issue
# between tensor.py and meta.py fix this
from nanotron.fp8.meta import FP8Meta
Expand Down
2 changes: 1 addition & 1 deletion src/nanotron/helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@ def init_random_states(parallel_config: ParallelismArgs, tp_pg: ProcessGroup):
{"tp_synced": get_synced_random_state(random_state=get_current_random_state(), pg=tp_pg)}
)
else:
# We don't need to sync across TP when using sequence parallel (REDUCE_SCATTER)
# NOTE: We don't need to sync across TP when using sequence parallel (REDUCE_SCATTER)
random_states = RandomStates({})
return random_states

Expand Down
2 changes: 1 addition & 1 deletion src/nanotron/models/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ def get_embeddings_lm_head_tied_names(self) -> list[str]:
Example for GPT2 model: ["model.token_position_embeddings.pp_block.token_embedding.weight", "model.lm_head.pp_block.weight"]
"""
return []

def get_named_params_without_weight_decay(self) -> List[str]:
"""Return a list of named parameters that should not have weight decay applied to them."""
return []
Expand Down
4 changes: 2 additions & 2 deletions src/nanotron/parallel/context.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import os
from typing import Literal, Tuple, Annotated
from typing import Literal, Tuple

import numpy as np
import torch
Expand Down Expand Up @@ -152,4 +152,4 @@ def get_global_rank(
:return: numpy.int64, The global rank.
"""
return self.world_rank_matrix[ep_rank, pp_rank, dp_rank, tp_rank]
return self.world_rank_matrix[ep_rank, pp_rank, dp_rank, tp_rank]
3 changes: 2 additions & 1 deletion src/nanotron/parallel/pipeline_parallel/context_manager.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,9 @@
from contextlib import contextmanager

from torch import nn as torch_nn

from nanotron.parallel.pipeline_parallel.block import PipelineBlock
from nanotron.parallel.pipeline_parallel.state import PipelineBatchState
from torch import nn as torch_nn


@contextmanager
Expand Down
5 changes: 3 additions & 2 deletions src/nanotron/parallel/pipeline_parallel/engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,9 @@
from typing import Dict, Iterable, Optional, Union

import torch
from torch import nn as torch_nn
from torch.nn.parallel import DistributedDataParallel

from nanotron import distributed as dist
from nanotron import logging
from nanotron.distributed import ProcessGroup
Expand All @@ -12,8 +15,6 @@
from nanotron.parallel.pipeline_parallel.state import PipelineTrainBatchState
from nanotron.parallel.pipeline_parallel.tensor_pointer import TensorPointer
from nanotron.utils import ContextManagers
from torch import nn as torch_nn
from torch.nn.parallel import DistributedDataParallel

logger = logging.get_logger(__name__)

Expand Down
1 change: 1 addition & 0 deletions src/nanotron/parallel/pipeline_parallel/functional.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import torch

from nanotron import logging
from nanotron.parallel.pipeline_parallel.p2p import P2P
from nanotron.parallel.pipeline_parallel.state import PipelineBatchState
Expand Down
3 changes: 2 additions & 1 deletion src/nanotron/parallel/pipeline_parallel/p2p.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
from typing import List, Sequence, Tuple

import torch

from nanotron import distributed as dist
from nanotron import logging
from nanotron.utils import get_untyped_storage, tensor_from_untyped_storage
Expand Down Expand Up @@ -399,7 +400,7 @@ def add_send(self, tensor: torch.Tensor, to_rank: int, tag: int = 0):
def add_recv(self, from_rank: int, tag: int = 0) -> int:
"""
Only add p2p ops for the first operation, as `_recv_second_metadata` and `_recv_data_p2p_op`
require results from the first metadata to be transfered first.
require results from the first metadata to be transferred first.
Return: index of the recv_buffer in `self.recv_first_metadata_buffers`
"""
buffer, recv_op = self.p2p._recv_first_metadata_p2p_op(from_rank=from_rank, tag=tag)
Expand Down
1 change: 1 addition & 0 deletions src/nanotron/parallel/pipeline_parallel/state.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
from typing import List

import torch

from nanotron import distributed as dist
from nanotron import logging
from nanotron.logging import log_rank
Expand Down
5 changes: 3 additions & 2 deletions src/nanotron/parallel/pipeline_parallel/utils.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,9 @@
from nanotron.models import NanotronModel
from nanotron.parallel.pipeline_parallel.block import PipelineBlock
from torch import nn
from torch.nn.parallel import DistributedDataParallel

from nanotron.models import NanotronModel
from nanotron.parallel.pipeline_parallel.block import PipelineBlock


def get_input_output_pp_ranks(model: NanotronModel | DistributedDataParallel):
if isinstance(model, DistributedDataParallel):
Expand Down
Loading

0 comments on commit e4d48e3

Please sign in to comment.