Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement DeepSeek V2 #2744

Open
wants to merge 10 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions candle-examples/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -122,3 +122,7 @@ required-features = ["onnx"]
[[example]]
name = "colpali"
required-features = ["pdf2image"]

EricLBuehler marked this conversation as resolved.
Show resolved Hide resolved
[[example]]
name = "deepseekv2"
required-features = []
40 changes: 40 additions & 0 deletions candle-examples/examples/deepseekv2/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
# DeepSeek V2

DeepSeek V2 an MoE model featuring MLA (Multi-Latent Attention). There is a lite (16B) and a full (236B) model.

- Context length of **32k tokens** (Lite model), **128k tokens** (full model)
- 64 routed experts (Lite model), 160 routed experts (full model)

## Running the example

```bash
$ cargo run --example deepseekv2 --release --features cuda -- --prompt Hello --sample-len 150

Generated text:
Write helloworld code in Rust
=============================

This is a simple example of how to write "Hello, world!" program in Rust.

## Compile and run

``bash
$ cargo build --release
Compiling hello-world v0.1.0 (/home/user/rust/hello-world)
Finished release [optimized] target(s) in 0.26s
$ ./target/release/hello-world
Hello, world!
``

## Source code

``rust
fn main() {
println!("Hello, world!");
}
``

## License

This example is released under the terms
```
282 changes: 282 additions & 0 deletions candle-examples/examples/deepseekv2/main.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,282 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;

#[cfg(feature = "accelerate")]
extern crate accelerate_src;

use anyhow::{Error as E, Result};
use clap::Parser;

use candle_transformers::models::deepseek2::{DeepSeekV2, DeepSeekV2Config};

use candle::{DType, Device, Tensor};
use candle_examples::token_output_stream::TokenOutputStream;
use candle_nn::VarBuilder;
use candle_transformers::generation::{LogitsProcessor, Sampling};
use hf_hub::{api::sync::Api, Repo, RepoType};
use tokenizers::Tokenizer;

struct TextGeneration {
model: DeepSeekV2,
device: Device,
tokenizer: TokenOutputStream,
logits_processor: LogitsProcessor,
repeat_penalty: f32,
repeat_last_n: usize,
}

impl TextGeneration {
#[allow(clippy::too_many_arguments)]
fn new(
model: DeepSeekV2,
tokenizer: Tokenizer,
seed: u64,
temp: Option<f64>,
top_p: Option<f64>,
top_k: Option<usize>,
repeat_penalty: f32,
repeat_last_n: usize,
device: &Device,
) -> Self {
let logits_processor = {
let temperature = temp.unwrap_or(0.);
let sampling = if temperature <= 0. {
Sampling::ArgMax
} else {
match (top_k, top_p) {
(None, None) => Sampling::All { temperature },
(Some(k), None) => Sampling::TopK { k, temperature },
(None, Some(p)) => Sampling::TopP { p, temperature },
(Some(k), Some(p)) => Sampling::TopKThenTopP { k, p, temperature },
}
};
LogitsProcessor::from_sampling(seed, sampling)
};

Self {
model,
tokenizer: TokenOutputStream::new(tokenizer),
logits_processor,
repeat_penalty,
repeat_last_n,
device: device.clone(),
}
}

fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
use std::io::Write;
self.tokenizer.clear();
let mut tokens = self
.tokenizer
.tokenizer()
.encode(prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
for &t in tokens.iter() {
if let Some(t) = self.tokenizer.next_token(t)? {
print!("{t}")
}
}
std::io::stdout().flush()?;

let mut generated_tokens = 0usize;
let eos_token = match self.tokenizer.get_token("<|end▁of▁sentence|>") {
Some(token) => token,
None => anyhow::bail!("cannot find the <|end▁of▁sentence|> token"),
};
let start_gen = std::time::Instant::now();
for index in 0..sample_len {
let context_size = if index > 0 { 1 } else { tokens.len() };
let start_pos = tokens.len().saturating_sub(context_size);
let ctxt = &tokens[start_pos..];
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
let logits = self.model.forward(&input, start_pos)?;
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
let logits = if self.repeat_penalty == 1. {
logits
} else {
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
self.repeat_penalty,
&tokens[start_at..],
)?
};

let next_token = self.logits_processor.sample(&logits)?;
tokens.push(next_token);
generated_tokens += 1;
if next_token == eos_token {
break;
}
if let Some(t) = self.tokenizer.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
}
let dt = start_gen.elapsed();
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
std::io::stdout().flush()?;
println!(
"\n{generated_tokens} tokens generated ({:.2} token/s)",
generated_tokens as f64 / dt.as_secs_f64(),
);
Ok(())
}
}

#[derive(Clone, Debug, Copy, PartialEq, Eq, clap::ValueEnum)]
enum Which {
#[value(name = "lite")]
Lite,
#[value(name = "lite-chat")]
LiteChat,
#[value(name = "coder-lite-chat")]
CoderLiteChat,
#[value(name = "v2")]
V2,
#[value(name = "v2-chat")]
V2Chat,
}

#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,

/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,

#[arg(long)]
use_flash_attn: bool,

#[arg(long)]
prompt: String,

/// The temperature used to generate samples.
#[arg(long)]
temperature: Option<f64>,

/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,

/// Only sample among the top K samples.
#[arg(long)]
top_k: Option<usize>,

/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,

/// The length of the sample to generate (in tokens).
#[arg(long, short = 'n', default_value_t = 10000)]
sample_len: usize,

/// The model size to use.
#[arg(long, default_value = "lite")]
which: Which,

#[arg(long)]
model_id: Option<String>,

#[arg(long, default_value = "main")]
revision: String,

/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
repeat_penalty: f32,

/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
}

fn main() -> Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;

let args = Args::parse();

let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature.unwrap_or(0.),
args.repeat_penalty,
args.repeat_last_n
);

let start = std::time::Instant::now();
let api = Api::new()?;
let model_id = match args.model_id {
Some(model_id) => model_id,
None => match args.which {
Which::CoderLiteChat => "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct".to_string(),
Which::LiteChat => "deepseek-ai/DeepSeek-V2-Lite-Chat".to_string(),
Which::Lite => "deepseek-ai/DeepSeek-V2-Lite".to_string(),
Which::V2 => "deepseek-ai/DeepSeek-V2".to_string(),
Which::V2Chat => "deepseek-ai/DeepSeek-V2-Chat".to_string(),
},
};
let repo = api.repo(Repo::with_revision(
model_id,
RepoType::Model,
args.revision,
));
let tokenizer_filename = repo.get("tokenizer.json")?;
let filenames = candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?;
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;

let start = std::time::Instant::now();
let config: DeepSeekV2Config = {
let config_file = repo.get("config.json")?;
serde_json::from_slice(&std::fs::read(config_file)?)?
};
let device = candle_examples::device(args.cpu)?;
let (model, device) = {
let dtype = if device.is_cuda() {
EricLBuehler marked this conversation as resolved.
Show resolved Hide resolved
DType::BF16
} else {
DType::F16
};
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
let model = DeepSeekV2::new(&config, vb)?;
(model, device)
};

println!("loaded the model in {:?}", start.elapsed());

let mut pipeline = TextGeneration::new(
model,
tokenizer,
args.seed,
args.temperature,
args.top_p,
args.top_k,
args.repeat_penalty,
args.repeat_last_n,
&device,
);
pipeline.run(&args.prompt, args.sample_len)?;
Ok(())
}
Loading
Loading