forked from NVIDIA/NVFlare
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
1ddcdcb
commit a2bd72b
Showing
10 changed files
with
636 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
# Flower launcher example with FedProx | ||
|
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
from collections import OrderedDict | ||
import warnings | ||
|
||
import flwr as fl | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from torchvision.transforms import Compose, ToTensor, Normalize | ||
from torch.utils.data import DataLoader | ||
from torchvision.datasets import CIFAR10 | ||
|
||
# ############################################################################# | ||
# Regular PyTorch pipeline: nn.Module, train, test, and DataLoader | ||
# ############################################################################# | ||
|
||
warnings.filterwarnings("ignore", category=UserWarning) | ||
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | ||
|
||
class Net(nn.Module): | ||
"""Model (simple CNN adapted from 'PyTorch: A 60 Minute Blitz')""" | ||
|
||
def __init__(self) -> None: | ||
super(Net, self).__init__() | ||
self.conv1 = nn.Conv2d(3, 6, 5) | ||
self.pool = nn.MaxPool2d(2, 2) | ||
self.conv2 = nn.Conv2d(6, 16, 5) | ||
self.fc1 = nn.Linear(16 * 5 * 5, 120) | ||
self.fc2 = nn.Linear(120, 84) | ||
self.fc3 = nn.Linear(84, 10) | ||
|
||
def forward(self, x: torch.Tensor) -> torch.Tensor: | ||
x = self.pool(F.relu(self.conv1(x))) | ||
x = self.pool(F.relu(self.conv2(x))) | ||
x = x.view(-1, 16 * 5 * 5) | ||
x = F.relu(self.fc1(x)) | ||
x = F.relu(self.fc2(x)) | ||
return self.fc3(x) | ||
|
||
def train(net, trainloader, epochs): | ||
"""Train the model on the training set.""" | ||
criterion = torch.nn.CrossEntropyLoss() | ||
optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9) | ||
for _ in range(epochs): | ||
for images, labels in trainloader: | ||
optimizer.zero_grad() | ||
criterion(net(images.to(DEVICE)), labels.to(DEVICE)).backward() | ||
optimizer.step() | ||
|
||
def test(net, testloader): | ||
"""Validate the model on the test set.""" | ||
criterion = torch.nn.CrossEntropyLoss() | ||
correct, total, loss = 0, 0, 0.0 | ||
with torch.no_grad(): | ||
for images, labels in testloader: | ||
outputs = net(images.to(DEVICE)) | ||
loss += criterion(outputs, labels.to(DEVICE)).item() | ||
total += labels.size(0) | ||
correct += (torch.max(outputs.data, 1)[1] == labels).sum().item() | ||
return loss / len(testloader.dataset), correct / total | ||
|
||
def load_data(): | ||
"""Load CIFAR-10 (training and test set).""" | ||
trf = Compose([ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) | ||
trainset = CIFAR10("./data", train=True, download=True, transform=trf) | ||
testset = CIFAR10("./data", train=False, download=True, transform=trf) | ||
return DataLoader(trainset, batch_size=32, shuffle=True), DataLoader(testset) | ||
|
||
# ############################################################################# | ||
# Federating the pipeline with Flower | ||
# ############################################################################# | ||
|
||
# Load model and data (simple CNN, CIFAR-10) | ||
net = Net().to(DEVICE) | ||
trainloader, testloader = load_data() | ||
|
||
# Define Flower client | ||
class FlowerClient(fl.client.NumPyClient): | ||
def get_parameters(self, config): | ||
return [val.cpu().numpy() for _, val in net.state_dict().items()] | ||
|
||
def set_parameters(self, parameters): | ||
params_dict = zip(net.state_dict().keys(), parameters) | ||
state_dict = OrderedDict({k: torch.tensor(v) for k, v in params_dict}) | ||
net.load_state_dict(state_dict, strict=True) | ||
|
||
def fit(self, parameters, config): | ||
self.set_parameters(parameters) | ||
train(net, trainloader, epochs=1) | ||
return self.get_parameters(config={}), len(trainloader.dataset), {} | ||
|
||
def evaluate(self, parameters, config): | ||
self.set_parameters(parameters) | ||
loss, accuracy = test(net, testloader) | ||
return float(loss), len(testloader.dataset), {"accuracy": float(accuracy)} | ||
|
||
# Start Flower client | ||
fl.client.start_numpy_client(server_address="127.0.0.1:8080", client=FlowerClient(), insecure=True) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
import flwr as fl | ||
|
||
# Start Flower server | ||
fl.server.start_server( | ||
server_address="0.0.0.0:8080", | ||
config=fl.server.ServerConfig(num_rounds=3), | ||
) |
77 changes: 77 additions & 0 deletions
77
examples/advanced/flower/fedprox/jobs/flwr_cifar10/app/config/config_fed_client.conf
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
{ | ||
format_version = 2 | ||
app_script = "client.py" | ||
app_config = "" | ||
executors = [ | ||
{ | ||
tasks = [ | ||
"train" | ||
] | ||
executor { | ||
path = "nvflare.app_opt.pt.client_api_launcher_executor.PTClientAPILauncherExecutor" | ||
args { | ||
launcher_id = "launcher" | ||
pipe_id = "pipe" | ||
heartbeat_timeout = 60 | ||
params_exchange_format = "pytorch" | ||
params_transfer_type = "DIFF" | ||
train_with_evaluation = true | ||
} | ||
} | ||
} | ||
] | ||
task_data_filters = [] | ||
task_result_filters = [] | ||
components = [ | ||
{ | ||
id = "launcher" | ||
path = "nvflare.app_common.launchers.subprocess_launcher.SubprocessLauncher" | ||
args { | ||
script = "python3 custom/{app_script} {app_config} " | ||
launch_once = true | ||
} | ||
} | ||
{ | ||
id = "pipe" | ||
path = "nvflare.fuel.utils.pipe.cell_pipe.CellPipe" | ||
args { | ||
mode = "PASSIVE" | ||
site_name = "{SITE_NAME}" | ||
token = "{JOB_ID}" | ||
root_url = "{ROOT_URL}" | ||
secure_mode = "{SECURE_MODE}" | ||
workspace_dir = "{WORKSPACE}" | ||
} | ||
} | ||
{ | ||
id = "metrics_pipe" | ||
path = "nvflare.fuel.utils.pipe.cell_pipe.CellPipe" | ||
args { | ||
mode = "PASSIVE" | ||
site_name = "{SITE_NAME}" | ||
token = "{JOB_ID}" | ||
root_url = "{ROOT_URL}" | ||
secure_mode = "{SECURE_MODE}" | ||
workspace_dir = "{WORKSPACE}" | ||
} | ||
} | ||
{ | ||
id = "metric_relay" | ||
path = "nvflare.app_common.widgets.metric_relay.MetricRelay" | ||
args { | ||
pipe_id = "metrics_pipe" | ||
event_type = "fed.analytix_log_stats" | ||
read_interval = 0.1 | ||
} | ||
} | ||
{ | ||
id = "config_preparer" | ||
path = "nvflare.app_common.widgets.external_configurator.ExternalConfigurator" | ||
args { | ||
component_ids = [ | ||
"metric_relay" | ||
] | ||
} | ||
} | ||
] | ||
} |
26 changes: 26 additions & 0 deletions
26
examples/advanced/flower/fedprox/jobs/flwr_cifar10/app/config/config_fed_server.conf
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
{ | ||
format_version = 2 | ||
task_data_filters = [] | ||
task_result_filters = [] | ||
app_script = "server.py" | ||
app_config = "" | ||
workflows = [ | ||
{ | ||
id = "controller_launcher" | ||
path = "controller_launcher.ControllerLauncher" | ||
args { | ||
launcher_id = "launcher" | ||
} | ||
} | ||
] | ||
components = [ | ||
{ | ||
id = "launcher" | ||
path = "nvflare.app_common.launchers.subprocess_launcher.SubprocessLauncher" | ||
args { | ||
script = "python3 custom/{app_script} {app_config} " | ||
launch_once = true | ||
} | ||
} | ||
] | ||
} |
98 changes: 98 additions & 0 deletions
98
examples/advanced/flower/fedprox/jobs/flwr_cifar10/app/custom/client.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
from collections import OrderedDict | ||
import warnings | ||
|
||
import flwr as fl | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from torchvision.transforms import Compose, ToTensor, Normalize | ||
from torch.utils.data import DataLoader | ||
from torchvision.datasets import CIFAR10 | ||
|
||
# ############################################################################# | ||
# Regular PyTorch pipeline: nn.Module, train, test, and DataLoader | ||
# ############################################################################# | ||
|
||
warnings.filterwarnings("ignore", category=UserWarning) | ||
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | ||
|
||
class Net(nn.Module): | ||
"""Model (simple CNN adapted from 'PyTorch: A 60 Minute Blitz')""" | ||
|
||
def __init__(self) -> None: | ||
super(Net, self).__init__() | ||
self.conv1 = nn.Conv2d(3, 6, 5) | ||
self.pool = nn.MaxPool2d(2, 2) | ||
self.conv2 = nn.Conv2d(6, 16, 5) | ||
self.fc1 = nn.Linear(16 * 5 * 5, 120) | ||
self.fc2 = nn.Linear(120, 84) | ||
self.fc3 = nn.Linear(84, 10) | ||
|
||
def forward(self, x: torch.Tensor) -> torch.Tensor: | ||
x = self.pool(F.relu(self.conv1(x))) | ||
x = self.pool(F.relu(self.conv2(x))) | ||
x = x.view(-1, 16 * 5 * 5) | ||
x = F.relu(self.fc1(x)) | ||
x = F.relu(self.fc2(x)) | ||
return self.fc3(x) | ||
|
||
def train(net, trainloader, epochs): | ||
"""Train the model on the training set.""" | ||
criterion = torch.nn.CrossEntropyLoss() | ||
optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9) | ||
for _ in range(epochs): | ||
for images, labels in trainloader: | ||
print("train...") | ||
optimizer.zero_grad() | ||
criterion(net(images.to(DEVICE)), labels.to(DEVICE)).backward() | ||
optimizer.step() | ||
|
||
def test(net, testloader): | ||
"""Validate the model on the test set.""" | ||
criterion = torch.nn.CrossEntropyLoss() | ||
correct, total, loss = 0, 0, 0.0 | ||
with torch.no_grad(): | ||
for images, labels in testloader: | ||
outputs = net(images.to(DEVICE)) | ||
loss += criterion(outputs, labels.to(DEVICE)).item() | ||
total += labels.size(0) | ||
correct += (torch.max(outputs.data, 1)[1] == labels).sum().item() | ||
return loss / len(testloader.dataset), correct / total | ||
|
||
def load_data(): | ||
"""Load CIFAR-10 (training and test set).""" | ||
trf = Compose([ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) | ||
trainset = CIFAR10("./data", train=True, download=True, transform=trf) | ||
testset = CIFAR10("./data", train=False, download=True, transform=trf) | ||
return DataLoader(trainset, batch_size=32, shuffle=True), DataLoader(testset) | ||
|
||
# ############################################################################# | ||
# Federating the pipeline with Flower | ||
# ############################################################################# | ||
|
||
# Load model and data (simple CNN, CIFAR-10) | ||
net = Net().to(DEVICE) | ||
trainloader, testloader = load_data() | ||
|
||
# Define Flower client | ||
class FlowerClient(fl.client.NumPyClient): | ||
def get_parameters(self, config): | ||
return [val.cpu().numpy() for _, val in net.state_dict().items()] | ||
|
||
def set_parameters(self, parameters): | ||
params_dict = zip(net.state_dict().keys(), parameters) | ||
state_dict = OrderedDict({k: torch.tensor(v) for k, v in params_dict}) | ||
net.load_state_dict(state_dict, strict=True) | ||
|
||
def fit(self, parameters, config): | ||
self.set_parameters(parameters) | ||
train(net, trainloader, epochs=1) | ||
return self.get_parameters(config={}), len(trainloader.dataset), {} | ||
|
||
def evaluate(self, parameters, config): | ||
self.set_parameters(parameters) | ||
loss, accuracy = test(net, testloader) | ||
return float(loss), len(testloader.dataset), {"accuracy": float(accuracy)} | ||
|
||
# Start Flower client | ||
fl.client.start_numpy_client(server_address="0.0.0.0:8080", client=FlowerClient(), insecure=True) # "127.0.0.1:8080" |
68 changes: 68 additions & 0 deletions
68
examples/advanced/flower/fedprox/jobs/flwr_cifar10/app/custom/controller_launcher.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import time | ||
|
||
from nvflare.app_common.workflows.model_controller import ModelController | ||
from nvflare.app_common.abstract.launcher import Launcher, LauncherRunStatus | ||
from nvflare.apis.fl_context import FLContext | ||
from nvflare.apis.shareable import Shareable | ||
from nvflare.fuel.utils.validation_utils import check_object_type | ||
|
||
|
||
class ControllerLauncher(ModelController): | ||
"""The base controller for FedAvg Workflow. *Note*: This class is based on the experimental `ModelController`. | ||
Implements [FederatedAveraging](https://arxiv.org/abs/1602.05629). | ||
The model persistor (persistor_id) is used to load the initial global model which is sent to a list of clients. | ||
Each client sends it's updated weights after local training which is aggregated. | ||
Next, the global model is updated. | ||
The model_persistor also saves the model after training. | ||
Provides the default implementations for the follow routines: | ||
- def sample_clients(self, min_clients) | ||
- def aggregate(self, results: List[FLModel], aggregate_fn=None) -> FLModel | ||
- def update_model(self, aggr_result) | ||
The `run` routine needs to be implemented by the derived class: | ||
- def run(self) | ||
""" | ||
|
||
def __init__(self, launcher_id): | ||
super().__init__() | ||
self._launcher_id = launcher_id | ||
|
||
def _init_launcher(self, fl_ctx: FLContext): | ||
engine = fl_ctx.get_engine() | ||
launcher: Launcher = engine.get_component(self._launcher_id) | ||
if launcher is None: | ||
raise RuntimeError(f"Launcher can not be found using {self._launcher_id}") | ||
check_object_type(self._launcher_id, launcher, Launcher) | ||
self.launcher = launcher | ||
|
||
def run(self): | ||
self.info("Start Controller Launcher.") | ||
|
||
self._init_launcher(self.fl_ctx) | ||
|
||
#self.launcher.launch_task("train", shareable=Shareable(), fl_ctx=self.fl_ctx, abort_signal=self.abort_signal) | ||
self.launcher.initialize(fl_ctx=self.fl_ctx) | ||
|
||
while True: | ||
time.sleep(10) | ||
print(f"Running task ... [{self.launcher._script}]") | ||
|
||
self.info("Stop Controller Launcher.") | ||
|
8 changes: 8 additions & 0 deletions
8
examples/advanced/flower/fedprox/jobs/flwr_cifar10/app/custom/server.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
import flwr as fl | ||
|
||
# Start Flower server | ||
#fl.server.start_server( | ||
# server_address="0.0.0.0:8080", | ||
# config=fl.server.ServerConfig(num_rounds=3), | ||
#) | ||
print("Run Server code...") |
Oops, something went wrong.