forked from open-mmlab/mmdetection3d
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Enhance] Support with_velocity=False in CenterPoint and NuScenesData…
…set (open-mmlab#1469) * fixed some bugs of CenterPoint and NuScenesDataset when velocity is ignored * add bbox_code_size attribute for DataBaseSampler & add with_velocity property for CenterPoint * add time_dim attribute for * update the config of the no velocity version centerpoint * [fix] fix bugs in LoadPointsFromMultiSweeps to pass unit testing Co-authored-by: Wenwei Zhang <[email protected]>
- Loading branch information
Showing
6 changed files
with
255 additions
and
21 deletions.
There are no files selected for viewing
186 changes: 186 additions & 0 deletions
186
configs/centerpoint/centerpoint_02pillar_second_secfpn_4x8_cyclic_20e_nus_novelo.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,186 @@ | ||
_base_ = [ | ||
'../_base_/datasets/nus-3d.py', | ||
'../_base_/models/centerpoint_02pillar_second_secfpn_nus.py', | ||
'../_base_/schedules/cyclic_20e.py', '../_base_/default_runtime.py' | ||
] | ||
|
||
# If point cloud range is changed, the models should also change their point | ||
# cloud range accordingly | ||
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0] | ||
# For nuScenes we usually do 10-class detection | ||
class_names = [ | ||
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier', | ||
'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone' | ||
] | ||
|
||
model = dict( | ||
pts_voxel_layer=dict(point_cloud_range=point_cloud_range), | ||
pts_voxel_encoder=dict(point_cloud_range=point_cloud_range), | ||
pts_bbox_head=dict( | ||
bbox_coder=dict(pc_range=point_cloud_range[:2], code_size=7), | ||
common_heads=dict( | ||
reg=(2, 2), height=(1, 2), dim=(3, 2), rot=(2, 2), _delete_=True)), | ||
# model training and testing settings | ||
train_cfg=dict( | ||
pts=dict( | ||
point_cloud_range=point_cloud_range, | ||
code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0])), | ||
test_cfg=dict(pts=dict(pc_range=point_cloud_range[:2]))) | ||
|
||
dataset_type = 'NuScenesDataset' | ||
data_root = 'data/nuscenes/' | ||
file_client_args = dict(backend='disk') | ||
|
||
db_sampler = dict( | ||
data_root=data_root, | ||
info_path=data_root + 'nuscenes_dbinfos_train.pkl', | ||
rate=1.0, | ||
bbox_code_size=7, | ||
prepare=dict( | ||
filter_by_difficulty=[-1], | ||
filter_by_min_points=dict( | ||
car=5, | ||
truck=5, | ||
bus=5, | ||
trailer=5, | ||
construction_vehicle=5, | ||
traffic_cone=5, | ||
barrier=5, | ||
motorcycle=5, | ||
bicycle=5, | ||
pedestrian=5)), | ||
classes=class_names, | ||
sample_groups=dict( | ||
car=2, | ||
truck=3, | ||
construction_vehicle=7, | ||
bus=4, | ||
trailer=6, | ||
barrier=2, | ||
motorcycle=6, | ||
bicycle=6, | ||
pedestrian=2, | ||
traffic_cone=2), | ||
points_loader=dict( | ||
type='LoadPointsFromFile', | ||
coord_type='LIDAR', | ||
load_dim=5, | ||
use_dim=[0, 1, 2, 3, 4], | ||
file_client_args=file_client_args)) | ||
|
||
train_pipeline = [ | ||
dict( | ||
type='LoadPointsFromFile', | ||
coord_type='LIDAR', | ||
load_dim=5, | ||
use_dim=5, | ||
file_client_args=file_client_args), | ||
dict( | ||
type='LoadPointsFromMultiSweeps', | ||
sweeps_num=9, | ||
use_dim=[0, 1, 2, 3, 4], | ||
file_client_args=file_client_args, | ||
pad_empty_sweeps=True, | ||
remove_close=True), | ||
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), | ||
dict(type='ObjectSample', db_sampler=db_sampler), | ||
dict( | ||
type='GlobalRotScaleTrans', | ||
rot_range=[-0.3925, 0.3925], | ||
scale_ratio_range=[0.95, 1.05], | ||
translation_std=[0, 0, 0]), | ||
dict( | ||
type='RandomFlip3D', | ||
sync_2d=False, | ||
flip_ratio_bev_horizontal=0.5, | ||
flip_ratio_bev_vertical=0.5), | ||
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), | ||
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), | ||
dict(type='ObjectNameFilter', classes=class_names), | ||
dict(type='PointShuffle'), | ||
dict(type='DefaultFormatBundle3D', class_names=class_names), | ||
dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) | ||
] | ||
test_pipeline = [ | ||
dict( | ||
type='LoadPointsFromFile', | ||
coord_type='LIDAR', | ||
load_dim=5, | ||
use_dim=5, | ||
file_client_args=file_client_args), | ||
dict( | ||
type='LoadPointsFromMultiSweeps', | ||
sweeps_num=9, | ||
use_dim=[0, 1, 2, 3, 4], | ||
file_client_args=file_client_args, | ||
pad_empty_sweeps=True, | ||
remove_close=True), | ||
dict( | ||
type='MultiScaleFlipAug3D', | ||
img_scale=(1333, 800), | ||
pts_scale_ratio=1, | ||
flip=False, | ||
transforms=[ | ||
dict( | ||
type='GlobalRotScaleTrans', | ||
rot_range=[0, 0], | ||
scale_ratio_range=[1., 1.], | ||
translation_std=[0, 0, 0]), | ||
dict(type='RandomFlip3D'), | ||
dict( | ||
type='DefaultFormatBundle3D', | ||
class_names=class_names, | ||
with_label=False), | ||
dict(type='Collect3D', keys=['points']) | ||
]) | ||
] | ||
# construct a pipeline for data and gt loading in show function | ||
# please keep its loading function consistent with test_pipeline (e.g. client) | ||
eval_pipeline = [ | ||
dict( | ||
type='LoadPointsFromFile', | ||
coord_type='LIDAR', | ||
load_dim=5, | ||
use_dim=5, | ||
file_client_args=file_client_args), | ||
dict( | ||
type='LoadPointsFromMultiSweeps', | ||
sweeps_num=9, | ||
use_dim=[0, 1, 2, 3, 4], | ||
file_client_args=file_client_args, | ||
pad_empty_sweeps=True, | ||
remove_close=True), | ||
dict( | ||
type='DefaultFormatBundle3D', | ||
class_names=class_names, | ||
with_label=False), | ||
dict(type='Collect3D', keys=['points']) | ||
] | ||
|
||
train_load_interval = 1000 | ||
|
||
with_velocity = False | ||
data = dict( | ||
train=dict( | ||
type='CBGSDataset', | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'nuscenes_infos_train.pkl', | ||
pipeline=train_pipeline, | ||
load_interval=train_load_interval, | ||
classes=class_names, | ||
with_velocity=with_velocity, | ||
test_mode=False, | ||
use_valid_flag=True, | ||
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset | ||
# and box_type_3d='Depth' in sunrgbd and scannet dataset. | ||
box_type_3d='LiDAR')), | ||
val=dict( | ||
pipeline=test_pipeline, | ||
classes=class_names, | ||
with_velocity=with_velocity), | ||
test=dict( | ||
pipeline=test_pipeline, | ||
classes=class_names, | ||
with_velocity=with_velocity)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.