Skip to content

Commit

Permalink
Correct w0wa
Browse files Browse the repository at this point in the history
  • Loading branch information
hersle committed Nov 25, 2024
1 parent 2b5a929 commit 1027f33
Show file tree
Hide file tree
Showing 2 changed files with 6 additions and 3 deletions.
7 changes: 5 additions & 2 deletions presentation/draft.md
Original file line number Diff line number Diff line change
Expand Up @@ -227,11 +227,14 @@ julia> equations(M.G)

# Example: add $w₀wₐ$ dark energy: SymBoltz vs. CLASS

Governing equations:

$$
\begin{aligned}
w &= \frac{P}{\rho} = w_0 + w_a (1-a), \\
\frac{\mathrm{d}\rho}{\mathrm{d}\tau} &= -3 ℋ (\rho+P) \quad \rightarrow \quad \rho = ρ₀ a^{-3 (1 + w_0 + w_a)} e^{-3 w_a (1-a)}, \\
\frac{\mathrm{d}\delta}{\mathrm{d}\tau} &= -ℋ (1-3w)\theta - \frac{\frac{\mathrm{d}w}{\mathrm{d}\tau}}{1+w}\theta + \frac{c_s^2}{1+w} k^2 \delta - k^2 \sigma + k^2 \Psi, \\
\frac{\mathrm{d}\delta}{\mathrm{d}\tau} &= -\Big(1+w\Big)\Big(\theta-3\frac{\mathrm{d}\Phi}{\mathrm{d}\tau}\Big) - 3 ℋ (c_s^2 - w) \delta, \\
\frac{\mathrm{d}\theta}{\mathrm{d}\tau} &= -ℋ (1-3w)\theta - \frac{\frac{\mathrm{d}w}{\mathrm{d}\tau}}{1+w}\theta + \frac{c_s^2}{1+w} k^2 \delta - k^2 \sigma + k^2 \Psi, \\
\sigma &= 0 \\
\end{aligned}
$$
Expand All @@ -254,7 +257,7 @@ eqs = [
O^0)(w ~ w₀ + wₐ * (1 - g.a))
O^0)(ρ ~ ρ₀ * g.a^(-3 * (1 + w₀ + wₐ)) * exp(-3 * wₐ * (1 - g.a)))
O^0)(P ~ w * ρ)
O^1)(D(δ) ~ -(1 + w) *- 3*g.Φ) - 3 * g.* (cₛ² - w) * δ)
O^1)(D(δ) ~ -(1 + w) *- 3*D(g.Φ)) - 3 * g.* (cₛ² - w) * δ)
O^1)(D(θ) ~ -g.* (1 - 3*w) - D(w) / (1 + w) * θ + cₛ² / (1 + w) * k^2 * δ - k^2 * σ + k^2 * g.Ψ)
O^1)(σ ~ 0)
]
Expand Down
2 changes: 1 addition & 1 deletion src/components/species.jl
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ function w0wa(g; name = :X, analytical = false, kwargs...)
P ~ w * ρ # pressure
] .|> SymBoltz.O^0) # O(ϵ⁰) multiplies all equations by 1 (no effect, but see step 5)
eqs1 = [
D(δ) ~ -(1 + w) *- 3*g.Φ) - 3 * g.* (cₛ² - w) * δ # energy overdensity
D(δ) ~ -(1 + w) *- 3*D(g.Φ)) - 3 * g.* (cₛ² - w) * δ # energy overdensity
D(θ) ~ -g.* (1 - 3*w) * θ - D(w) / (1 + w) * θ + cₛ² / (1 + w) * k^2 * δ - k^2 * σ + k^2 * g.Ψ # momentum
σ ~ 0 # shear stress
] .|> SymBoltz.O^1) # O(ϵ¹) multiplies all equations by ϵ, marking them as perturbation equations
Expand Down

0 comments on commit 1027f33

Please sign in to comment.