Skip to content

Commit

Permalink
[Neurips23] ParlayANN Submission for OOD track (#186)
Browse files Browse the repository at this point in the history
* initial commit

* added default alpha

* fixed bad dockerfile

* cache bust

* fixed timeout

* added additional search configs to get past .9

* one more query config

* added two pass arg

* fixing arg in diskann dockerfile

* committing to switch branches

* committing to switch branches

* committing to switch branches

* added vamana.py

* fixed issue in file detection

* finalizing before PR

* changes requested for PR

* changes for PR

* initial commit

* added two pass arg

* added default alpha

* cache bust

* added additional search configs to get past .9

* one more query config

* committing to switch branches

* committing to switch branches

* committing to switch branches

* added vamana.py

* fixed issue in file detection

* finalizing before PR

* changes requested for PR

---------

Co-authored-by: Ben Landrum <[email protected]>
Co-authored-by: Magdalen Dobson <[email protected]>
  • Loading branch information
3 people authored Oct 29, 2023
1 parent 9b3a10a commit 72b61f6
Show file tree
Hide file tree
Showing 5 changed files with 232 additions and 0 deletions.
3 changes: 3 additions & 0 deletions .github/workflows/neurips23.yml
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,9 @@ jobs:
- algorithm: diskann
dataset: random-xs
track: ood
- algorithm: vamana
dataset: random-xs
track: ood
fail-fast: false

steps:
Expand Down
1 change: 1 addition & 0 deletions benchmark/dataset_io.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
def download(src, dst=None, max_size=None):
""" download an URL, possibly cropped """
if os.path.exists(dst):
print("Already exists")
return
print('downloading %s -> %s...' % (src, dst))
if max_size is not None:
Expand Down
24 changes: 24 additions & 0 deletions neurips23/ood/vamana/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
FROM neurips23

RUN apt update
RUN apt install -y software-properties-common
RUN add-apt-repository -y ppa:git-core/ppa
RUN apt update
RUN DEBIAN_FRONTEND=noninteractive apt install -y git make cmake g++ libaio-dev libgoogle-perftools-dev libunwind-dev clang-format libboost-dev libboost-program-options-dev libmkl-full-dev libcpprest-dev python3.10


ARG CACHEBUST=1
RUN git clone -b ood_v2 https://github.com/cmuparlay/ParlayANN.git && cd ParlayANN && git submodule update --init --recursive && cd python && pip install pybind11 && bash compile.sh
# WORKDIR /home/app/ParlayANN
# RUN git submodule update --init --recursive
# WORKDIR /home/app/ParlayANN/python

# RUN pip install pybind11

# RUN bash compile.sh

ENV PYTHONPATH=$PYTHONPATH:/home/app/ParlayANN/python

# ENV PARLAY_NUM_THREADS=8

WORKDIR /home/app
54 changes: 54 additions & 0 deletions neurips23/ood/vamana/config.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
random-xs:
vamana:
docker-tag: neurips23-ood-vamana
module: neurips23.ood.vamana.vamana
constructor: vamana
base-args: ["@metric"]
run-groups:
base:
args: |
[{"R":30, "L":50, "alpha":1.2}]
query-args: |
[{"Ls":50, "T":8}]
text2image-10M:
vamana:
docker-tag: neurips23-ood-vamana
module: neurips23.ood.vamana.vamana
constructor: vamana
base-args: ["@metric"]
run-groups:
base:
args: |
[{"R":55, "L":500, "alpha":1.0, "two_pass":1, "use_query_data":1, "compress":1}]
query-args: |
[
{"Ls":70, "T":8},
{"Ls":80, "T":8},
{"Ls":90, "T":8},
{"Ls":95, "T":8},
{"Ls":100, "T":8},
{"Ls":105, "T":8},
{"Ls":110, "T":8},
{"Ls":120, "T":8},
{"Ls":125, "T":8},
{"Ls":150, "T":8}]
vamana-singlepass:
docker-tag: neurips23-ood-vamana
module: neurips23.ood.vamana.vamana
constructor: vamana
base-args: ["@metric"]
run-groups:
base:
args: |
[{"R":64, "L":500}]
query-args: |
[{"Ls":30, "T":8},
{"Ls":50, "T":8},
{"Ls":70, "T":8},
{"Ls":100, "T":8},
{"Ls":113, "T":8},
{"Ls":125, "T":8},
{"Ls":150, "T":8},
{"Ls":175, "T":8},
{"Ls":200, "T":8}]
150 changes: 150 additions & 0 deletions neurips23/ood/vamana/vamana.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
from __future__ import absolute_import
import psutil
import os
import time
import numpy as np
import wrapper as pann

from neurips23.ood.base import BaseOODANN
from benchmark.datasets import DATASETS, download_accelerated, BASEDIR
from benchmark.dataset_io import download

class vamana(BaseOODANN):
def __init__(self, metric, index_params):
self.name = "vamana"
if (index_params.get("R")==None):
print("Error: missing parameter R")
return
if (index_params.get("L")==None):
print("Error: missing parameter L")
return
self._index_params = index_params
self._metric = self.translate_dist_fn(metric)

self.R = int(index_params.get("R"))
self.L = int(index_params.get("L"))
self.alpha = float(index_params.get("alpha", 1.0))
self.two_pass = bool(index_params.get("two_pass", False))
self.use_query_data = bool(index_params.get("use_query_data", False))
self.compress_vectors = bool(index_params.get("compress", False))

def index_name(self):
return f"R{self.R}_L{self.L}_alpha{self.alpha}"

def create_index_dir(self, dataset):
index_dir = os.path.join(os.getcwd(), "data", "indices", "ood")
os.makedirs(index_dir, mode=0o777, exist_ok=True)
index_dir = os.path.join(index_dir, 'vamana')
os.makedirs(index_dir, mode=0o777, exist_ok=True)
index_dir = os.path.join(index_dir, dataset.short_name())
os.makedirs(index_dir, mode=0o777, exist_ok=True)
index_dir = os.path.join(index_dir, self.index_name())
os.makedirs(index_dir, mode=0o777, exist_ok=True)
return os.path.join(index_dir, self.index_name())

def translate_dist_fn(self, metric):
if metric == 'euclidean':
return 'Euclidian'
elif metric == 'ip':
return 'mips'
else:
raise Exception('Invalid metric')

def translate_dtype(self, dtype:str):
if dtype == 'float32':
return 'float'
else:
return dtype

def prepare_sample_info(self, index_dir):
if(self.use_query_data):
#download the additional sample points for the ood index
self.sample_points_path = "data/text2image1B/query_sample_200000.fbin"
sample_qs_large_url = "https://storage.yandexcloud.net/yr-secret-share/ann-datasets-5ac0659e27/T2I/query.private.1M.fbin"
bytes_to_download = 8 + 200000*4*200
download(sample_qs_large_url, self.sample_points_path, bytes_to_download)
header = np.memmap(self.sample_points_path, shape=2, dtype='uint32', mode="r+")
header[0] = 200000

self.secondary_index_dir = index_dir + ".secondary"
self.secondary_gt_dir = self.secondary_index_dir + ".gt"
else:
self.sample_points_path = ""
self.secondary_index_dir = ""
self.secondary_gt_dir = ""

def prepare_compressed_info(self):
if(self.compress_vectors):
self.compressed_vectors_path = "data/text2image1B/compressed_10M.fbin"
else:
self.compressed_vectors_path = ""

def fit(self, dataset):
"""
Build the index for the data points given in dataset name.
"""
ds = DATASETS[dataset]()
d = ds.d

index_dir = self.create_index_dir(ds)

self.prepare_sample_info(index_dir)
self.prepare_compressed_info()

if hasattr(self, 'index'):
print("Index already exists")
return
else:
start = time.time()
# ds.ds_fn is the name of the dataset file but probably needs a prefix
pann.build_vamana_index(self._metric, self.translate_dtype(ds.dtype), ds.get_dataset_fn(), self.sample_points_path,
self.compressed_vectors_path, index_dir, self.secondary_index_dir, self.secondary_gt_dir, self.R, self.L, self.alpha,
self.two_pass)
end = time.time()
print("Indexing time: ", end - start)
print(f"Wrote index to {index_dir}")

self.index = pann.load_vamana_index(self._metric, self.translate_dtype(ds.dtype), ds.get_dataset_fn(), self.compressed_vectors_path,
self.sample_points_path, index_dir, self.secondary_index_dir, self.secondary_gt_dir, ds.nb, d)
print("Index loaded")

def query(self, X, k):
nq, d = X.shape
self.res, self.query_dists = self.index.batch_search(X, nq, k, self.Ls)

def set_query_arguments(self, query_args):
self._query_args = query_args
self.Ls = 0 if query_args.get("Ls") is None else query_args.get("Ls")
self.search_threads = self._query_args.get("T", 16)
os.environ["PARLAY_NUM_THREADS"] = str(self.search_threads)

def load_index(self, dataset):
ds = DATASETS[dataset]()
d = ds.d

index_dir = self.create_index_dir(ds)
self.prepare_sample_info(index_dir)
self.prepare_compressed_info()

print("Trying to load...")

try:
file_size = os.path.getsize(index_dir)
print(f"File Size in Bytes is {file_size}")
except FileNotFoundError:
file_size = 0
print("File not found.")

if file_size != 0:
try:
self.index = pann.load_vamana_index(self._metric, self.translate_dtype(ds.dtype), ds.get_dataset_fn(),
self.compressed_vectors_path, self.sample_points_path, index_dir,
self.secondary_index_dir, self.secondary_gt_dir, ds.nb, d)
print("Index loaded")
return True
except:
print("Index not found")
return False
else:
print("Index not found")
return False

0 comments on commit 72b61f6

Please sign in to comment.