-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #8 from yli091230/add-association-example
add files and notebook for association test
- Loading branch information
Showing
4 changed files
with
1,832 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,178 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# This notebook provides an example script for running association test\n", | ||
"1. Install all required packages\n", | ||
"2. Download required files from the `files_for_association` folder" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import csv\n", | ||
"import pandas as pd\n", | ||
"import numpy as np\n", | ||
"import math\n", | ||
"from tqdm import tqdm\n", | ||
"import random\n", | ||
"import statsmodels.api as sm\n", | ||
"from sklearn import preprocessing\n", | ||
"import statsmodels.stats.multitest\n", | ||
"\n", | ||
"def getData(filename):\n", | ||
" with open(filename, \"r\") as csvfile:\n", | ||
" reader = csv.reader(csvfile)\n", | ||
" for row in reader:\n", | ||
" yield row\n", | ||
"\n", | ||
"def exonstrSLR(chrom,Pop,files_dir,minTs=10,mingt=3,minsPgt=3,search_range=100_000):\n", | ||
" \"\"\"\n", | ||
" Pop: population \n", | ||
" minTs: minimum samples required for regression\n", | ||
" mingt: minimum genotypes required for regression\n", | ||
" minsPgt: minimum samples requried for genotypes to be included in regression\n", | ||
" search_range: ranges search for associated STRs\n", | ||
" \"\"\"\n", | ||
"\n", | ||
" #load covariates\n", | ||
" cov_df=pd.read_csv(f'{files_dir}/covariates_all.csv',sep='\\t',index_col='sample_id')\n", | ||
" exp_df=pd.read_csv(f'{files_dir}/'+Pop+'_normalized_and_filtered_hg38_chr21.csv',sep='\\t')\n", | ||
" gt_dir=f'{files_dir}/chr'+str(chrom)+'.GB.FORMAT'\n", | ||
" \n", | ||
" csv_gen = getData(gt_dir)\n", | ||
" row_count = 0\n", | ||
" p_df = pd.DataFrame(columns =[ \"str-gene\",\"str_end\",\"motif\",\"gene_name\", \"sample_n\",\"GT_n\",\"p_values\",\"slope\",'error',\"shuffled_p\",\"shuffled_slope\",\"shuffled_error\"])\n", | ||
" #the total length just for illustration purpose, can remove tqdm when running in large batches\n", | ||
" for row in tqdm(csv_gen,total=1067):\n", | ||
" if row_count==0:\n", | ||
" #extract sample name of current STR\n", | ||
" col_name=row[0].split('\\t')\n", | ||
" row_count+=1\n", | ||
" continue\n", | ||
"\n", | ||
" gt_value=list(filter(lambda a: a!='',row[0].split('\\t')))\n", | ||
" gt_df=pd.DataFrame([gt_value],columns=col_name)\n", | ||
" gt_df[gt_df.columns[4:]]=gt_df[gt_df.columns[4:]]. \\\n", | ||
" applymap(lambda x: [int(x.split('/')[0]),int(x.split('/')[1])] if '/' in x else [None,None])\n", | ||
" gt_samples=gt_df.columns[4:][gt_df.iloc[0,4:].apply(lambda x: x !=[None,None])].to_list()\n", | ||
" gt_psi_samples=list(set(exp_df.columns[5:]) & set(gt_samples))\n", | ||
" #STR GENOTYPE FILTER\n", | ||
" gt_psi_phased=gt_df[gt_psi_samples].T.rename(columns={0:'GT'}).applymap(lambda x: sum(x))\n", | ||
" gt_sum=gt_psi_phased.groupby('GT').size()\n", | ||
"\n", | ||
" #get joint data\n", | ||
" gt_ab_3=gt_sum[gt_sum>=minsPgt].index.tolist()\n", | ||
" #check number of genotype and check how many samples remains\n", | ||
" if len(gt_ab_3)<mingt or gt_sum[gt_ab_3].sum()<minTs:\n", | ||
" row_count+=1\n", | ||
" continue\n", | ||
"\n", | ||
" gt_psi_filted_samples=set(gt_psi_phased[gt_psi_phased.GT.isin(gt_ab_3)].index) & set(cov_df.index)\n", | ||
" gt_psi_samples=list(gt_psi_filted_samples)\n", | ||
"\n", | ||
" gt_df=gt_df[gt_df.columns[0:4].to_list()+gt_psi_samples]\n", | ||
" joint_cov_df=cov_df.loc[gt_psi_samples]\n", | ||
" joint_exp_df=exp_df[exp_df.columns[0:5].tolist()+gt_psi_samples]\n", | ||
" joint_exp_df=joint_exp_df[joint_exp_df.chromosome.values == gt_df['CHROM'].values]\n", | ||
"\n", | ||
" paired_df=joint_exp_df[(joint_exp_df.start - search_range <= int(gt_df.POS)) \\\n", | ||
" & (joint_exp_df.end + search_range >= (int(gt_df.POS)))]\n", | ||
"\n", | ||
" if paired_df.empty:\n", | ||
" row_count+=1\n", | ||
" continue\n", | ||
"\n", | ||
" for index, curr_exon in paired_df.iterrows():\n", | ||
" #contat the PSI, genotype, peer and pc for current exon of all samples\n", | ||
" a=pd.concat([curr_exon[5:].astype('float64'),\\\n", | ||
" gt_df[gt_psi_samples].T.rename(columns={0:'GT'}).applymap(lambda x: sum(x)),\\\n", | ||
" joint_cov_df],\\\n", | ||
" axis=1).rename(columns={index:'exp'})\n", | ||
"\n", | ||
" a=a[~a.exp.isnull()]\n", | ||
" #standardization\n", | ||
" a_scaled = preprocessing.StandardScaler().fit_transform(a)\n", | ||
" y=a_scaled[:,0]\n", | ||
" x=a_scaled[:,1:]\n", | ||
" x=sm.add_constant(x)\n", | ||
" mod_ols = sm.OLS(y,x)\n", | ||
" res_ols = mod_ols.fit()\n", | ||
" p_values=res_ols.pvalues[1]\n", | ||
" slope=res_ols.params[1]\n", | ||
" err=res_ols.bse[1]\n", | ||
"\n", | ||
" shuffled_y = random.sample(list(y),len(y))\n", | ||
" mod_ols_s = sm.OLS(shuffled_y,x)\n", | ||
" res_ols_s = mod_ols_s.fit()\n", | ||
" shuffled_p=res_ols_s.pvalues[1]\n", | ||
" slope_p=res_ols_s.params[1]\n", | ||
" err_p=res_ols_s.bse[1]\n", | ||
"\n", | ||
" p_df = p_df.append({\"str-gene\":list(gt_df.CHROM +'_'+ gt_df.POS.str.rstrip()+'-'+curr_exon.gene_id)[0],\\\n", | ||
" \"str_end\":gt_df.END.tolist()[0],\\\n", | ||
" \"motif\":gt_df.motif.tolist()[0],\\\n", | ||
" \"gene_name\":curr_exon.gene_name,\"sample_n\":len(a),\"GT_n\":len(gt_ab_3),\"p_values\":p_values,\\\n", | ||
" \"slope\":slope,\"error\":err,\"shuffled_p\":shuffled_p,\"shuffled_slope\":slope_p,\\\n", | ||
" \"shuffled_error\":err_p}, ignore_index=True)\n", | ||
" row_count+=1\n", | ||
"\n", | ||
" return p_df" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#directory where association files are lcoated\n", | ||
"reg_file_dir=\"/expanse/protected/gymreklab-dbgap/mount/yal084/genotyping_repeats_tutorial/files_for_association\"\n", | ||
"#running regression\n", | ||
"reg_results=exonstrSLR(21,\"AFR\",reg_file_dir)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"reg_results.head()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.5" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
Oops, something went wrong.