Skip to content

Commit

Permalink
Merge pull request #8 from yli091230/add-association-example
Browse files Browse the repository at this point in the history
add files and notebook for association test
  • Loading branch information
harbi811 authored Apr 27, 2024
2 parents f111a1e + 7dbab05 commit dc867ed
Show file tree
Hide file tree
Showing 4 changed files with 1,832 additions and 0 deletions.
178 changes: 178 additions & 0 deletions association_example.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,178 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# This notebook provides an example script for running association test\n",
"1. Install all required packages\n",
"2. Download required files from the `files_for_association` folder"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import csv\n",
"import pandas as pd\n",
"import numpy as np\n",
"import math\n",
"from tqdm import tqdm\n",
"import random\n",
"import statsmodels.api as sm\n",
"from sklearn import preprocessing\n",
"import statsmodels.stats.multitest\n",
"\n",
"def getData(filename):\n",
" with open(filename, \"r\") as csvfile:\n",
" reader = csv.reader(csvfile)\n",
" for row in reader:\n",
" yield row\n",
"\n",
"def exonstrSLR(chrom,Pop,files_dir,minTs=10,mingt=3,minsPgt=3,search_range=100_000):\n",
" \"\"\"\n",
" Pop: population \n",
" minTs: minimum samples required for regression\n",
" mingt: minimum genotypes required for regression\n",
" minsPgt: minimum samples requried for genotypes to be included in regression\n",
" search_range: ranges search for associated STRs\n",
" \"\"\"\n",
"\n",
" #load covariates\n",
" cov_df=pd.read_csv(f'{files_dir}/covariates_all.csv',sep='\\t',index_col='sample_id')\n",
" exp_df=pd.read_csv(f'{files_dir}/'+Pop+'_normalized_and_filtered_hg38_chr21.csv',sep='\\t')\n",
" gt_dir=f'{files_dir}/chr'+str(chrom)+'.GB.FORMAT'\n",
" \n",
" csv_gen = getData(gt_dir)\n",
" row_count = 0\n",
" p_df = pd.DataFrame(columns =[ \"str-gene\",\"str_end\",\"motif\",\"gene_name\", \"sample_n\",\"GT_n\",\"p_values\",\"slope\",'error',\"shuffled_p\",\"shuffled_slope\",\"shuffled_error\"])\n",
" #the total length just for illustration purpose, can remove tqdm when running in large batches\n",
" for row in tqdm(csv_gen,total=1067):\n",
" if row_count==0:\n",
" #extract sample name of current STR\n",
" col_name=row[0].split('\\t')\n",
" row_count+=1\n",
" continue\n",
"\n",
" gt_value=list(filter(lambda a: a!='',row[0].split('\\t')))\n",
" gt_df=pd.DataFrame([gt_value],columns=col_name)\n",
" gt_df[gt_df.columns[4:]]=gt_df[gt_df.columns[4:]]. \\\n",
" applymap(lambda x: [int(x.split('/')[0]),int(x.split('/')[1])] if '/' in x else [None,None])\n",
" gt_samples=gt_df.columns[4:][gt_df.iloc[0,4:].apply(lambda x: x !=[None,None])].to_list()\n",
" gt_psi_samples=list(set(exp_df.columns[5:]) & set(gt_samples))\n",
" #STR GENOTYPE FILTER\n",
" gt_psi_phased=gt_df[gt_psi_samples].T.rename(columns={0:'GT'}).applymap(lambda x: sum(x))\n",
" gt_sum=gt_psi_phased.groupby('GT').size()\n",
"\n",
" #get joint data\n",
" gt_ab_3=gt_sum[gt_sum>=minsPgt].index.tolist()\n",
" #check number of genotype and check how many samples remains\n",
" if len(gt_ab_3)<mingt or gt_sum[gt_ab_3].sum()<minTs:\n",
" row_count+=1\n",
" continue\n",
"\n",
" gt_psi_filted_samples=set(gt_psi_phased[gt_psi_phased.GT.isin(gt_ab_3)].index) & set(cov_df.index)\n",
" gt_psi_samples=list(gt_psi_filted_samples)\n",
"\n",
" gt_df=gt_df[gt_df.columns[0:4].to_list()+gt_psi_samples]\n",
" joint_cov_df=cov_df.loc[gt_psi_samples]\n",
" joint_exp_df=exp_df[exp_df.columns[0:5].tolist()+gt_psi_samples]\n",
" joint_exp_df=joint_exp_df[joint_exp_df.chromosome.values == gt_df['CHROM'].values]\n",
"\n",
" paired_df=joint_exp_df[(joint_exp_df.start - search_range <= int(gt_df.POS)) \\\n",
" & (joint_exp_df.end + search_range >= (int(gt_df.POS)))]\n",
"\n",
" if paired_df.empty:\n",
" row_count+=1\n",
" continue\n",
"\n",
" for index, curr_exon in paired_df.iterrows():\n",
" #contat the PSI, genotype, peer and pc for current exon of all samples\n",
" a=pd.concat([curr_exon[5:].astype('float64'),\\\n",
" gt_df[gt_psi_samples].T.rename(columns={0:'GT'}).applymap(lambda x: sum(x)),\\\n",
" joint_cov_df],\\\n",
" axis=1).rename(columns={index:'exp'})\n",
"\n",
" a=a[~a.exp.isnull()]\n",
" #standardization\n",
" a_scaled = preprocessing.StandardScaler().fit_transform(a)\n",
" y=a_scaled[:,0]\n",
" x=a_scaled[:,1:]\n",
" x=sm.add_constant(x)\n",
" mod_ols = sm.OLS(y,x)\n",
" res_ols = mod_ols.fit()\n",
" p_values=res_ols.pvalues[1]\n",
" slope=res_ols.params[1]\n",
" err=res_ols.bse[1]\n",
"\n",
" shuffled_y = random.sample(list(y),len(y))\n",
" mod_ols_s = sm.OLS(shuffled_y,x)\n",
" res_ols_s = mod_ols_s.fit()\n",
" shuffled_p=res_ols_s.pvalues[1]\n",
" slope_p=res_ols_s.params[1]\n",
" err_p=res_ols_s.bse[1]\n",
"\n",
" p_df = p_df.append({\"str-gene\":list(gt_df.CHROM +'_'+ gt_df.POS.str.rstrip()+'-'+curr_exon.gene_id)[0],\\\n",
" \"str_end\":gt_df.END.tolist()[0],\\\n",
" \"motif\":gt_df.motif.tolist()[0],\\\n",
" \"gene_name\":curr_exon.gene_name,\"sample_n\":len(a),\"GT_n\":len(gt_ab_3),\"p_values\":p_values,\\\n",
" \"slope\":slope,\"error\":err,\"shuffled_p\":shuffled_p,\"shuffled_slope\":slope_p,\\\n",
" \"shuffled_error\":err_p}, ignore_index=True)\n",
" row_count+=1\n",
"\n",
" return p_df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#directory where association files are lcoated\n",
"reg_file_dir=\"/expanse/protected/gymreklab-dbgap/mount/yal084/genotyping_repeats_tutorial/files_for_association\"\n",
"#running regression\n",
"reg_results=exonstrSLR(21,\"AFR\",reg_file_dir)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"reg_results.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Loading

0 comments on commit dc867ed

Please sign in to comment.