forked from mlc-ai/web-stable-diffusion
-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
7caa798
commit f881416
Showing
11 changed files
with
1,198 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,188 @@ | ||
# coding=utf-8 | ||
# Copyright 2024 The HuggingFace Inc. team. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" Conversion script for the LDM checkpoints. """ | ||
|
||
import argparse | ||
import importlib | ||
|
||
import torch | ||
|
||
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
|
||
parser.add_argument( | ||
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." | ||
) | ||
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml | ||
parser.add_argument( | ||
"--original_config_file", | ||
default=None, | ||
type=str, | ||
help="The YAML config file corresponding to the original architecture.", | ||
) | ||
parser.add_argument( | ||
"--config_files", | ||
default=None, | ||
type=str, | ||
help="The YAML config file corresponding to the architecture.", | ||
) | ||
parser.add_argument( | ||
"--num_in_channels", | ||
default=None, | ||
type=int, | ||
help="The number of input channels. If `None` number of input channels will be automatically inferred.", | ||
) | ||
parser.add_argument( | ||
"--scheduler_type", | ||
default="pndm", | ||
type=str, | ||
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", | ||
) | ||
parser.add_argument( | ||
"--pipeline_type", | ||
default=None, | ||
type=str, | ||
help=( | ||
"The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" | ||
". If `None` pipeline will be automatically inferred." | ||
), | ||
) | ||
parser.add_argument( | ||
"--image_size", | ||
default=None, | ||
type=int, | ||
help=( | ||
"The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" | ||
" Base. Use 768 for Stable Diffusion v2." | ||
), | ||
) | ||
parser.add_argument( | ||
"--prediction_type", | ||
default=None, | ||
type=str, | ||
help=( | ||
"The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" | ||
" Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." | ||
), | ||
) | ||
parser.add_argument( | ||
"--extract_ema", | ||
action="store_true", | ||
help=( | ||
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" | ||
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" | ||
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." | ||
), | ||
) | ||
parser.add_argument( | ||
"--upcast_attention", | ||
action="store_true", | ||
help=( | ||
"Whether the attention computation should always be upcasted. This is necessary when running stable" | ||
" diffusion 2.1." | ||
), | ||
) | ||
parser.add_argument( | ||
"--from_safetensors", | ||
action="store_true", | ||
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", | ||
) | ||
parser.add_argument( | ||
"--to_safetensors", | ||
action="store_true", | ||
help="Whether to store pipeline in safetensors format or not.", | ||
) | ||
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") | ||
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") | ||
parser.add_argument( | ||
"--stable_unclip", | ||
type=str, | ||
default=None, | ||
required=False, | ||
help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", | ||
) | ||
parser.add_argument( | ||
"--stable_unclip_prior", | ||
type=str, | ||
default=None, | ||
required=False, | ||
help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", | ||
) | ||
parser.add_argument( | ||
"--clip_stats_path", | ||
type=str, | ||
help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", | ||
required=False, | ||
) | ||
parser.add_argument( | ||
"--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." | ||
) | ||
parser.add_argument("--half", action="store_true", help="Save weights in half precision.") | ||
parser.add_argument( | ||
"--vae_path", | ||
type=str, | ||
default=None, | ||
required=False, | ||
help="Set to a path, hub id to an already converted vae to not convert it again.", | ||
) | ||
parser.add_argument( | ||
"--pipeline_class_name", | ||
type=str, | ||
default=None, | ||
required=False, | ||
help="Specify the pipeline class name", | ||
) | ||
|
||
args = parser.parse_args() | ||
|
||
if args.pipeline_class_name is not None: | ||
library = importlib.import_module("diffusers") | ||
class_obj = getattr(library, args.pipeline_class_name) | ||
pipeline_class = class_obj | ||
else: | ||
pipeline_class = None | ||
|
||
pipe = download_from_original_stable_diffusion_ckpt( | ||
checkpoint_path_or_dict=args.checkpoint_path, | ||
original_config_file=args.original_config_file, | ||
config_files=args.config_files, | ||
image_size=args.image_size, | ||
prediction_type=args.prediction_type, | ||
model_type=args.pipeline_type, | ||
extract_ema=args.extract_ema, | ||
scheduler_type=args.scheduler_type, | ||
num_in_channels=args.num_in_channels, | ||
upcast_attention=args.upcast_attention, | ||
from_safetensors=args.from_safetensors, | ||
device=args.device, | ||
stable_unclip=args.stable_unclip, | ||
stable_unclip_prior=args.stable_unclip_prior, | ||
clip_stats_path=args.clip_stats_path, | ||
controlnet=args.controlnet, | ||
vae_path=args.vae_path, | ||
pipeline_class=pipeline_class, | ||
) | ||
|
||
if args.half: | ||
pipe.to(dtype=torch.float16) | ||
|
||
if args.controlnet: | ||
# only save the controlnet model | ||
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) | ||
else: | ||
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.