-
Notifications
You must be signed in to change notification settings - Fork 359
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Scripts for dealing with preparation of offline gracedb upload files (#…
…4534) * Scripts for dealing with preparation of offline gracedb upload files * Update bin/all_sky_search/pycbc_make_bayestar_skymap Co-authored-by: Tito Dal Canton <[email protected]> * reinstate SNR timeseries being saved into HDF * TDC comments * TDC comments 2 * Remove unneeded import --------- Co-authored-by: Tito Dal Canton <[email protected]> Co-authored-by: Tito Dal Canton <[email protected]>
- Loading branch information
1 parent
438680d
commit 4784e77
Showing
7 changed files
with
595 additions
and
19 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,85 @@ | ||
#!/usr/bin/env python | ||
|
||
""" | ||
Simple wrapper around bayestar-localize-coincs to get sky localization for a | ||
specific compact binary merger event. | ||
Uses an XML containing SNR timeseries and PSD and calls BAYESTAR to produce a | ||
sky localization. | ||
The wrapper needs to exist as the XML format doesnt allow us to indicate | ||
the low frequency cutoff or waveform used. We also want to be able to control | ||
the output filename which is not possible in bayestar-localize-coincs | ||
Unrecognised options will be passed straight to the bayestar subprocess | ||
""" | ||
|
||
import argparse | ||
import subprocess | ||
import shutil | ||
import logging | ||
import os | ||
import glob | ||
import sys | ||
import random | ||
import tempfile | ||
import pycbc.version | ||
from pycbc import init_logging | ||
|
||
parser = argparse.ArgumentParser(description=__doc__) | ||
parser.add_argument('--version', action="version", | ||
version=pycbc.version.git_verbose_msg) | ||
parser.add_argument('--verbose', action='count', | ||
help="Make the logging increasingly more verbose") | ||
parser.add_argument('--bayestar-executable', | ||
help="The bayestar-localize-coinc executable to be run. " | ||
"If not given, will use whatever is available in " | ||
"the current environment.") | ||
parser.add_argument('--event-xml', required=True, | ||
help="XML file containing event information, SNR " | ||
"timeseries and PSD to pass to bayestar") | ||
parser.add_argument('--waveform', default='TaylorF2', | ||
help="Waveform used in the matched-filtering " | ||
"to generate the SNR timeseries.") | ||
parser.add_argument('--low-frequency-cutoff', type=float, default=20, | ||
help="Low-frequency cutoff used in the matched-filtering " | ||
"to generate the SNR timeseries") | ||
parser.add_argument('--output-file', required=True, | ||
help="Filename to output the fits file to.") | ||
args, unknown = parser.parse_known_args() | ||
|
||
# Default logging is set higher than normal for this job | ||
logging_level = args.verbose + 1 if args.verbose else None | ||
init_logging(logging_level) | ||
logging.info("Starting") | ||
|
||
bayestar_exe = args.bayestar_executable or 'bayestar-localize-coincs' | ||
|
||
tmpdir = tempfile.mkdtemp() | ||
|
||
# Set up the command to pass to bayestar. | ||
# The XML file path being passed twice is a legacy requirement, not a mistake. | ||
cmd = [bayestar_exe, | ||
args.event_xml, | ||
args.event_xml, | ||
'--waveform', args.waveform, | ||
'--f-low', str(args.low_frequency_cutoff), | ||
'-o', tmpdir] | ||
|
||
# Pass any unknown options straight to the subprocess | ||
cmd += unknown | ||
|
||
logging.info("Running %s", ' '.join(cmd)) | ||
subprocess.check_output(cmd) | ||
|
||
# Find the fits file in the temporary directory: | ||
# It would be nice to do this better! - maybe use the input xml | ||
# file to find the number which is going to be used? | ||
fits_filenames = glob.glob(os.path.join(tmpdir, '*.fits*')) | ||
if len(fits_filenames) != 1: | ||
raise ValueError(f'argh, got {len(fits_filenames)} FITS files after running BAYESTAR, I want one!') | ||
|
||
logging.info("Moving output to %s", args.output_file) | ||
shutil.move(fits_filenames[0], args.output_file) | ||
|
||
logging.info("Done") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,238 @@ | ||
#!/usr/bin/env python | ||
|
||
# Copyright (C) 2015-2023 Ian Harry, Gareth Cabourn Davies | ||
# | ||
# This program is free software; you can redistribute it and/or modify it | ||
# under the terms of the GNU General Public License as published by the | ||
# Free Software Foundation; either version 3 of the License, or (at your | ||
# option) any later version. | ||
# | ||
# This program is distributed in the hope that it will be useful, but | ||
# WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General | ||
# Public License for more details. | ||
# | ||
# You should have received a copy of the GNU General Public License along | ||
# with this program; if not, write to the Free Software Foundation, Inc., | ||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. | ||
|
||
""" | ||
Take a coinc xml file containing multiple events and prepare one of them | ||
for upload to gracedb. | ||
""" | ||
|
||
import argparse | ||
import logging | ||
import numpy as np | ||
import h5py | ||
import matplotlib | ||
matplotlib.use('agg') | ||
|
||
import pycbc | ||
import lal | ||
import lal.series | ||
from ligo.lw import lsctables | ||
from ligo.lw import utils as ligolw_utils | ||
from ligo.segments import segment, segmentlist | ||
from pycbc.io.ligolw import ( | ||
LIGOLWContentHandler, | ||
snr_series_to_xml, | ||
) | ||
from pycbc.psd import interpolate | ||
from pycbc.types import FrequencySeries, TimeSeries, load_timeseries | ||
from pycbc.types import MultiDetOptionAction | ||
from pycbc.results import generate_asd_plot, generate_snr_plot | ||
|
||
parser = argparse.ArgumentParser(description=__doc__) | ||
parser.add_argument("--verbose", action='count', | ||
help="Increase logging level, default=info") | ||
parser.add_argument("--psd-files", nargs='+', required=True, | ||
help='HDF file(s) containing the PSDs to upload') | ||
parser.add_argument("--snr-timeseries", nargs='+', required=True, | ||
help='HDF file(s) containing the SNR timeseries to upload') | ||
parser.add_argument('--input-file', required=True, type=str, | ||
help='Input LIGOLW XML file of coincidences.') | ||
parser.add_argument('--event-id', type=int, required=True, | ||
help='ID for the event being prepared.') | ||
parser.add_argument('--output-file', | ||
help="Output filename for the locally stored XML. ") | ||
parser.add_argument('--snr-timeseries-plot', | ||
help="Output filename for the plot of SNR timeseries. " | ||
"Must be a plot filetype as used by matplotlib.") | ||
parser.add_argument('--psd-plot', | ||
help="Output filename for the plot of the PSD. " | ||
"Must be a plot filetype as used by matplotlib.") | ||
parser.add_argument('--channel-name', action=MultiDetOptionAction, | ||
required=True, | ||
help="Channel name for adding to the uploaded single " | ||
"inspiral table.") | ||
parser.add_argument('--delta-f', type=float, default=0.25, | ||
help="Frequency spacing of the PSD to be uploaded, Hz. " | ||
"Default 0.25") | ||
|
||
args = parser.parse_args() | ||
|
||
if args.verbose: | ||
args.verbose += 1 | ||
else: | ||
args.verbose = 1 | ||
pycbc.init_logging(args.verbose) | ||
|
||
xmldoc = ligolw_utils.load_filename(args.input_file, | ||
contenthandler=LIGOLWContentHandler) | ||
|
||
class psd_segment(segment): | ||
def __new__(cls, psd, *args): | ||
return segment.__new__(cls, *args) | ||
def __init__(self, psd, *args): | ||
self.psd = psd | ||
|
||
def read_psds(psd_files): | ||
logging.info("Reading PSDs") | ||
psds = {} | ||
|
||
for psd_file in psd_files: | ||
(ifo, group), = h5py.File(psd_file, "r").items() | ||
psd = [group["psds"][str(i)] for i in range(len(group["psds"].keys()))] | ||
psds[ifo] = segmentlist(psd_segment(*segargs) for segargs in zip( | ||
psd, group["start_time"], group["end_time"])) | ||
return psds | ||
|
||
psds = read_psds(args.psd_files) | ||
|
||
def read_snr_timeseries(snr_timeseries_files): | ||
""" | ||
Get information from the single_template snr timeseries files | ||
""" | ||
logging.info("Reading SNR timeseries") | ||
snr_timeseries = {} | ||
for snr_filename in snr_timeseries_files: | ||
with h5py.File(snr_filename, 'r') as snr_f: | ||
ifo = snr_f.attrs['ifo'] | ||
time = snr_f.attrs['event_time'] | ||
snr_timeseries[(ifo, time)] = load_timeseries(snr_filename, 'snr') | ||
return snr_timeseries | ||
|
||
snr_timeseries = read_snr_timeseries(args.snr_timeseries) | ||
|
||
coinc_table = lsctables.CoincTable.get_table(xmldoc) | ||
coinc_inspiral_table = lsctables.CoincInspiralTable.get_table(xmldoc) | ||
coinc_event_map_table = lsctables.CoincMapTable.get_table(xmldoc) | ||
sngl_inspiral_table = lsctables.SnglInspiralTable.get_table(xmldoc) | ||
|
||
xmldoc.childNodes[-1].removeChild(sngl_inspiral_table) | ||
xmldoc.childNodes[-1].removeChild(coinc_event_map_table) | ||
xmldoc.childNodes[-1].removeChild(coinc_inspiral_table) | ||
xmldoc.childNodes[-1].removeChild(coinc_table) | ||
|
||
# Find the coinc_table entry corresponding to the desired event ID | ||
for event in coinc_table: | ||
coinc_event_id = event.coinc_event_id | ||
if args.event_id == coinc_event_id: | ||
# This is the event we want | ||
break | ||
else: | ||
raise ValueError(f"event {args.event_id} not found in coinc table") | ||
|
||
coinc_event_table_curr = lsctables.New(lsctables.CoincTable) | ||
coinc_event_table_curr.append(event) | ||
coinc_inspiral_table_curr = lsctables.New(lsctables.CoincInspiralTable) | ||
coinc_event_map_table_curr = lsctables.New(lsctables.CoincMapTable) | ||
sngl_inspiral_table_curr = lsctables.New(lsctables.SnglInspiralTable) | ||
|
||
for coinc_insp in coinc_inspiral_table: | ||
if coinc_insp.coinc_event_id == event.coinc_event_id: | ||
coinc_inspiral_table_curr.append(coinc_insp) | ||
|
||
time = coinc_inspiral_table_curr[0].end_time \ | ||
+ coinc_inspiral_table_curr[0].end_time_ns * 1e-9 | ||
|
||
sngl_ids = [] | ||
for coinc_map in coinc_event_map_table: | ||
if coinc_map.coinc_event_id == event.coinc_event_id: | ||
coinc_event_map_table_curr.append(coinc_map) | ||
sngl_ids.append(coinc_map.event_id) | ||
|
||
# Get the SNR timeseries and PSDs at the time of this event | ||
# these may not have contributed a trigger | ||
|
||
# Check that the SNR timeseries correspond to the event | ||
# - allow 0.5s either side of the time | ||
snr_ts = {} | ||
for ifo, t in snr_timeseries.keys(): | ||
if not abs(t - time) < 0.5: | ||
raise ValueError("SNR timeseries for IFO %s does not look like it " | ||
"corresponds to this event, event time %.3f, SNR timeseries is " | ||
"around time %.3f" % (ifo, time, t)) | ||
# Convert the SNR dict to be keyed on IFO-only: | ||
snr_ts[ifo] = snr_timeseries[(ifo, t)] | ||
|
||
# IFOs from SNR timeseries: | ||
psds_event = {} | ||
psddict = {} | ||
for ifo in snr_ts.keys(): | ||
psd = psds[ifo] | ||
|
||
psd = psd[psd.find(time)].psd | ||
# resample the psd to new spacing | ||
psd_fs = FrequencySeries(psd, delta_f=psd.attrs["delta_f"], | ||
dtype=np.float64) | ||
psd_fs = interpolate(psd_fs, args.delta_f) | ||
|
||
psds_event[ifo] = psd | ||
psddict[ifo] = psd_fs | ||
|
||
lal_psddict = {} | ||
sample_freqs = {} | ||
|
||
for sngl in sngl_inspiral_table: | ||
if sngl.event_id not in sngl_ids: | ||
continue | ||
sngl_inspiral_table_curr.append(sngl) | ||
sngl.channel = args.channel_name[sngl.ifo] | ||
|
||
# Two versions of the PSD dictionary have useful info here | ||
psd = psds_event[sngl.ifo] | ||
psd_fs = psddict[sngl.ifo] | ||
|
||
flow = psd.file.attrs['low_frequency_cutoff'] | ||
kmin = int(flow / args.delta_f) | ||
|
||
fseries = lal.CreateREAL8FrequencySeries( | ||
"psd", | ||
lal.LIGOTimeGPS(int(psd.attrs["epoch"])), | ||
kmin * args.delta_f, | ||
args.delta_f, | ||
lal.StrainUnit**2 / lal.HertzUnit, | ||
len(psd_fs) - kmin) | ||
fseries.data.data = psd_fs[kmin:] / np.square(pycbc.DYN_RANGE_FAC) | ||
lal_psddict[sngl.ifo] = fseries | ||
|
||
snr_series_to_xml(snr_ts[sngl.ifo], xmldoc, sngl.event_id) | ||
|
||
xmldoc.childNodes[-1].appendChild(coinc_event_table_curr) | ||
xmldoc.childNodes[-1].appendChild(coinc_inspiral_table_curr) | ||
xmldoc.childNodes[-1].appendChild(coinc_event_map_table_curr) | ||
xmldoc.childNodes[-1].appendChild(sngl_inspiral_table_curr) | ||
lal.series.make_psd_xmldoc(lal_psddict, xmldoc.childNodes[-1]) | ||
|
||
ligolw_utils.write_filename(xmldoc, args.output_file) | ||
logging.info("Saved XML file %s", args.output_file) | ||
|
||
if args.psd_plot: | ||
logging.info("Saving ASD plot %s", args.psd_plot) | ||
generate_asd_plot(psddict, args.psd_plot) | ||
|
||
if args.snr_timeseries_plot: | ||
triggers = {sngl.ifo: (sngl.end_time + sngl.end_time_ns * 1e-9, sngl.snr) | ||
for sngl in sngl_inspiral_table_curr} | ||
base_time = int(np.floor(time)) | ||
logging.info("Saving SNR plot %s", args.snr_timeseries_plot) | ||
generate_snr_plot( | ||
snr_ts, | ||
args.snr_timeseries_plot, | ||
triggers, | ||
base_time | ||
) | ||
|
||
logging.info('Done!') |
Oops, something went wrong.