Gym env for multi-task simulation with kinds of robotic arms, engined by pybullet
- multi-agent in one simulation
- multi-simulation with multiprocessing
- alternative for kinds of robotic arms (panda and ur5)
$ git clone [email protected]:guodashun/peg-in-hole-gym.git
$ cd peg-in-hole-gym
$ pip install -e .
import gym
import pybullet as p
import peg_in_hole_gym
env = gym.make('peg-in-hole-mp-v0', client=p.GUI, task='random-fly', mp_num=mp_num, sub_num=sub_num, offset = [2.,3.,0.],args=['Banana', 1/120.], is_test=True)
env.reset()
env.render()
obs = env.reset()
while True:
obs, reward, done, info = env.step(env.action_space.sample())
time.sleep(0.01)