-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #75 from guardrails-ai/dtam/feature/fast_api
migrate from flask to fast api for uvicorn and asgi support
- Loading branch information
Showing
35 changed files
with
1,294 additions
and
1,599 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,324 @@ | ||
import json | ||
import os | ||
import inspect | ||
from typing import Any, Dict, Optional | ||
from fastapi import HTTPException, Request, APIRouter | ||
from fastapi.responses import JSONResponse, StreamingResponse | ||
from urllib.parse import unquote_plus | ||
from guardrails import AsyncGuard, Guard | ||
from guardrails.classes import ValidationOutcome | ||
from opentelemetry.trace import Span | ||
from guardrails_api_client import Guard as GuardStruct | ||
from guardrails_api.clients.cache_client import CacheClient | ||
from guardrails_api.clients.memory_guard_client import MemoryGuardClient | ||
from guardrails_api.clients.pg_guard_client import PGGuardClient | ||
from guardrails_api.clients.postgres_client import postgres_is_enabled | ||
from guardrails_api.utils.get_llm_callable import get_llm_callable | ||
from guardrails_api.utils.openai import ( | ||
outcome_to_chat_completion, | ||
outcome_to_stream_response, | ||
) | ||
from guardrails_api.utils.handle_error import handle_error | ||
from string import Template | ||
|
||
# if no pg_host is set, use in memory guards | ||
if postgres_is_enabled(): | ||
guard_client = PGGuardClient() | ||
else: | ||
guard_client = MemoryGuardClient() | ||
# Will be defined at runtime | ||
import config # noqa | ||
|
||
exports = config.__dir__() | ||
for export_name in exports: | ||
export = getattr(config, export_name) | ||
is_guard = isinstance(export, Guard) | ||
if is_guard: | ||
guard_client.create_guard(export) | ||
|
||
cache_client = CacheClient() | ||
|
||
cache_client.initialize() | ||
|
||
router = APIRouter() | ||
|
||
|
||
@router.get("/guards") | ||
@handle_error | ||
async def get_guards(): | ||
guards = guard_client.get_guards() | ||
return [g.to_dict() for g in guards] | ||
|
||
|
||
@router.post("/guards") | ||
@handle_error | ||
async def create_guard(guard: GuardStruct): | ||
if not postgres_is_enabled(): | ||
raise HTTPException( | ||
status_code=501, | ||
detail="Not Implemented POST /guards is not implemented for in-memory guards.", | ||
) | ||
new_guard = guard_client.create_guard(guard) | ||
return new_guard.to_dict() | ||
|
||
|
||
@router.get("/guards/{guard_name}") | ||
@handle_error | ||
async def get_guard(guard_name: str, asOf: Optional[str] = None): | ||
decoded_guard_name = unquote_plus(guard_name) | ||
guard = guard_client.get_guard(decoded_guard_name, asOf) | ||
if guard is None: | ||
raise HTTPException( | ||
status_code=404, | ||
detail=f"A Guard with the name {decoded_guard_name} does not exist!", | ||
) | ||
return guard.to_dict() | ||
|
||
|
||
@router.put("/guards/{guard_name}") | ||
@handle_error | ||
async def update_guard(guard_name: str, guard: GuardStruct): | ||
if not postgres_is_enabled(): | ||
raise HTTPException( | ||
status_code=501, | ||
detail="PUT /<guard_name> is not implemented for in-memory guards.", | ||
) | ||
decoded_guard_name = unquote_plus(guard_name) | ||
updated_guard = guard_client.upsert_guard(decoded_guard_name, guard) | ||
return updated_guard.to_dict() | ||
|
||
|
||
@router.delete("/guards/{guard_name}") | ||
@handle_error | ||
async def delete_guard(guard_name: str): | ||
if not postgres_is_enabled(): | ||
raise HTTPException( | ||
status_code=501, | ||
detail="DELETE /<guard_name> is not implemented for in-memory guards.", | ||
) | ||
decoded_guard_name = unquote_plus(guard_name) | ||
guard = guard_client.delete_guard(decoded_guard_name) | ||
return guard.to_dict() | ||
|
||
|
||
@router.post("/guards/{guard_name}/openai/v1/chat/completions") | ||
@handle_error | ||
async def openai_v1_chat_completions(guard_name: str, request: Request): | ||
payload = await request.json() | ||
decoded_guard_name = unquote_plus(guard_name) | ||
guard_struct = guard_client.get_guard(decoded_guard_name) | ||
if guard_struct is None: | ||
raise HTTPException( | ||
status_code=404, | ||
detail=f"A Guard with the name {decoded_guard_name} does not exist!", | ||
) | ||
|
||
guard = ( | ||
Guard.from_dict(guard_struct.to_dict()) | ||
if not isinstance(guard_struct, Guard) | ||
else guard_struct | ||
) | ||
stream = payload.get("stream", False) | ||
has_tool_gd_tool_call = any( | ||
tool.get("function", {}).get("name") == "gd_response_tool" | ||
for tool in payload.get("tools", []) | ||
) | ||
|
||
if not stream: | ||
validation_outcome: ValidationOutcome = guard(num_reasks=0, **payload) | ||
llm_response = guard.history.last.iterations.last.outputs.llm_response_info | ||
result = outcome_to_chat_completion( | ||
validation_outcome=validation_outcome, | ||
llm_response=llm_response, | ||
has_tool_gd_tool_call=has_tool_gd_tool_call, | ||
) | ||
return JSONResponse(content=result) | ||
else: | ||
|
||
async def openai_streamer(): | ||
guard_stream = guard(num_reasks=0, **payload) | ||
for result in guard_stream: | ||
chunk = json.dumps( | ||
outcome_to_stream_response(validation_outcome=result) | ||
) | ||
yield f"data: {chunk}\n\n" | ||
yield "\n" | ||
|
||
return StreamingResponse(openai_streamer(), media_type="text/event-stream") | ||
|
||
|
||
@router.post("/guards/{guard_name}/validate") | ||
@handle_error | ||
async def validate(guard_name: str, request: Request): | ||
payload = await request.json() | ||
openai_api_key = request.headers.get( | ||
"x-openai-api-key", os.environ.get("OPENAI_API_KEY") | ||
) | ||
decoded_guard_name = unquote_plus(guard_name) | ||
guard_struct = guard_client.get_guard(decoded_guard_name) | ||
|
||
llm_output = payload.pop("llmOutput", None) | ||
num_reasks = payload.pop("numReasks", None) | ||
prompt_params = payload.pop("promptParams", {}) | ||
llm_api = payload.pop("llmApi", None) | ||
args = payload.pop("args", []) | ||
stream = payload.pop("stream", False) | ||
|
||
payload["api_key"] = payload.get("api_key", openai_api_key) | ||
|
||
if llm_api is not None: | ||
llm_api = get_llm_callable(llm_api) | ||
if openai_api_key is None: | ||
raise HTTPException( | ||
status_code=400, | ||
detail="Cannot perform calls to OpenAI without an api key.", | ||
) | ||
|
||
guard = guard_struct | ||
is_async = inspect.iscoroutinefunction(llm_api) | ||
|
||
if not isinstance(guard_struct, Guard): | ||
if is_async: | ||
guard = AsyncGuard.from_dict(guard_struct.to_dict()) | ||
else: | ||
guard: Guard = Guard.from_dict(guard_struct.to_dict()) | ||
elif is_async: | ||
guard: Guard = AsyncGuard.from_dict(guard_struct.to_dict()) | ||
|
||
if llm_api is None and num_reasks and num_reasks > 1: | ||
raise HTTPException( | ||
status_code=400, | ||
detail="Cannot perform re-asks without an LLM API. Specify llm_api when calling guard(...).", | ||
) | ||
|
||
if llm_output is not None: | ||
if stream: | ||
raise HTTPException( | ||
status_code=400, detail="Streaming is not supported for parse calls!" | ||
) | ||
result: ValidationOutcome = guard.parse( | ||
llm_output=llm_output, | ||
num_reasks=num_reasks, | ||
prompt_params=prompt_params, | ||
llm_api=llm_api, | ||
**payload, | ||
) | ||
else: | ||
if stream: | ||
|
||
async def guard_streamer(): | ||
guard_stream = guard( | ||
llm_api=llm_api, | ||
prompt_params=prompt_params, | ||
num_reasks=num_reasks, | ||
stream=stream, | ||
*args, | ||
**payload, | ||
) | ||
for result in guard_stream: | ||
validation_output = ValidationOutcome.from_guard_history( | ||
guard.history.last | ||
) | ||
yield validation_output, result | ||
|
||
async def validate_streamer(guard_iter): | ||
async for validation_output, result in guard_iter: | ||
fragment_dict = result.to_dict() | ||
fragment_dict["error_spans"] = [ | ||
json.dumps({"start": x.start, "end": x.end, "reason": x.reason}) | ||
for x in guard.error_spans_in_output() | ||
] | ||
yield json.dumps(fragment_dict) + "\n" | ||
|
||
call = guard.history.last | ||
final_validation_output = ValidationOutcome( | ||
callId=call.id, | ||
validation_passed=result.validation_passed, | ||
validated_output=result.validated_output, | ||
history=guard.history, | ||
raw_llm_output=result.raw_llm_output, | ||
) | ||
final_output_dict = final_validation_output.to_dict() | ||
final_output_dict["error_spans"] = [ | ||
json.dumps({"start": x.start, "end": x.end, "reason": x.reason}) | ||
for x in guard.error_spans_in_output() | ||
] | ||
yield json.dumps(final_output_dict) + "\n" | ||
|
||
serialized_history = [call.to_dict() for call in guard.history] | ||
cache_key = f"{guard.name}-{final_validation_output.call_id}" | ||
await cache_client.set(cache_key, serialized_history, 300) | ||
|
||
return StreamingResponse( | ||
validate_streamer(guard_streamer()), media_type="application/json" | ||
) | ||
else: | ||
if inspect.iscoroutinefunction(guard): | ||
result: ValidationOutcome = await guard( | ||
llm_api=llm_api, | ||
prompt_params=prompt_params, | ||
num_reasks=num_reasks, | ||
*args, | ||
**payload, | ||
) | ||
else: | ||
result: ValidationOutcome = guard( | ||
llm_api=llm_api, | ||
prompt_params=prompt_params, | ||
num_reasks=num_reasks, | ||
*args, | ||
**payload, | ||
) | ||
|
||
serialized_history = [call.to_dict() for call in guard.history] | ||
cache_key = f"{guard.name}-{result.call_id}" | ||
await cache_client.set(cache_key, serialized_history, 300) | ||
return result.to_dict() | ||
|
||
|
||
@router.get("/guards/{guard_name}/history/{call_id}") | ||
@handle_error | ||
async def guard_history(guard_name: str, call_id: str): | ||
cache_key = f"{guard_name}-{call_id}" | ||
return await cache_client.get(cache_key) | ||
|
||
|
||
def collect_telemetry( | ||
*, | ||
guard: Guard, | ||
validate_span: Span, | ||
validation_output: ValidationOutcome, | ||
prompt_params: Dict[str, Any], | ||
result: ValidationOutcome, | ||
): | ||
# Below is all telemetry collection and | ||
# should have no impact on what is returned to the user | ||
prompt = guard.history.last.inputs.prompt | ||
if prompt: | ||
prompt = Template(prompt).safe_substitute(**prompt_params) | ||
validate_span.set_attribute("prompt", prompt) | ||
|
||
instructions = guard.history.last.inputs.instructions | ||
if instructions: | ||
instructions = Template(instructions).safe_substitute(**prompt_params) | ||
validate_span.set_attribute("instructions", instructions) | ||
|
||
validate_span.set_attribute("validation_status", guard.history.last.status) | ||
validate_span.set_attribute("raw_llm_ouput", result.raw_llm_output) | ||
|
||
# Use the serialization from the class instead of re-writing it | ||
valid_output: str = ( | ||
json.dumps(validation_output.validated_output) | ||
if isinstance(validation_output.validated_output, dict) | ||
else str(validation_output.validated_output) | ||
) | ||
validate_span.set_attribute("validated_output", valid_output) | ||
|
||
validate_span.set_attribute("tokens_consumed", guard.history.last.tokens_consumed) | ||
|
||
num_of_reasks = ( | ||
guard.history.last.iterations.length - 1 | ||
if guard.history.last.iterations.length > 0 | ||
else 0 | ||
) | ||
validate_span.set_attribute("num_of_reasks", num_of_reasks) |
Oops, something went wrong.