This solution is based on the Neural MMO Baselines. For more information about the challenge, please refer to the challenge homepage.
Use docker/build.sh
to build image for training.
cd docker
bash build.sh
Run inside the training container:
export WANDB_API_KEY=xxx # Change it to yours
WANDB_PROJECT=xxx # Change it to yours
WANDB_ENTITY=xxx # Change it to yours
export WANDB_DISABLE_GIT=true
export WANDB_DISABLE_CODE=true
export OMP_NUM_THREADS=4
python train.py \
--runs-dir runs \
--use-ray-vecenv true \
--wandb-project $WANDB_PROJECT \
--wandb-entity $WANDB_ENTITY \
--model ReducedModelV2 \
--meander-bonus-weight 0.0 \
--heal-bonus-weight 0.0 \
--num-npcs 128 \
--early-stop-agent-num 0 \
--resilient-population 0.0 \
--ppo-update-epochs 1 \
--train-num-steps 40000000 \
--num-maps 1280 \
After training, copy the checkpoints into policies
and run:
python evaluate.py -p policies
policies/submission.pkl
is the trained model we submitted.