Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

initial implementation of DANN #16

Merged
merged 9 commits into from
Feb 5, 2025
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
187 changes: 187 additions & 0 deletions bin/dann/dann_impl.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,187 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "ece31ab8",
"metadata": {},
"source": [
"# Actual Implementation"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "fa05e35a",
"metadata": {},
"outputs": [],
"source": [
"from haloflow.dann.data_loader import SimulationDataset\n",
"from haloflow.dann import model as M\n",
"from haloflow.dann import train as T\n",
"from haloflow.dann import evalutate as E\n",
"from haloflow.dann import visualise as V\n",
"\n",
"from haloflow import config as C"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "34c68ded",
"metadata": {},
"outputs": [],
"source": [
"import torch"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "b91cf1a2",
"metadata": {},
"outputs": [],
"source": [
"# Configuration\n",
"config = {\n",
" 'sims': ['TNG50', 'TNG100', 'Eagle100', 'Simba100', 'TNG_ALL'],\n",
" 'obs': 'mags',\n",
" 'dat_dir': C.get_dat_dir(),\n",
" 'input_dim': None, # Will be inferred from data\n",
" 'num_domains': 4,\n",
" 'batch_size': 128,\n",
" 'num_epochs': 100,\n",
" 'lr': 0.001,\n",
" 'alpha': 0.5,\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "5fc0cda4",
"metadata": {},
"outputs": [],
"source": [
"dataset = SimulationDataset(config['sims'], config['obs'], config['dat_dir'])\n",
"train_loader, test_loader = dataset.get_train_test_loaders(\n",
" train_sims=config['sims'][:-1], # First 4 sims for training\n",
" test_sim=config['sims'][-1], # Last sim (TNG_ALL) for testing\n",
" batch_size=config['batch_size']\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "8a1c0109",
"metadata": {},
"outputs": [],
"source": [
"# Infer input dimension from data\n",
"sample_X, _, _ = next(iter(train_loader))\n",
"config['input_dim'] = sample_X.shape[1]"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "cd0d8406",
"metadata": {},
"outputs": [],
"source": [
"# Initialize model\n",
"model = M.DANN(input_dim=config['input_dim'], \n",
" num_domains=config['num_domains'], \n",
" alpha=config['alpha']\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "484a59a2",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# Train\n",
"T.train_dann(\n",
" model, \n",
" train_loader, \n",
" test_loader, \n",
" num_epochs=config['num_epochs'], \n",
" lr=config['lr'], \n",
" device='cuda' if torch.cuda.is_available() else 'cpu'\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "3725b6a6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Evaluating Regression Performance:\n",
"MSE: 0.0955, RMSE: 0.3090, R²: 0.7535\n",
"\n",
"Evaluating Domain Accuracy:\n",
"Domain Accuracy: 0.3846\n"
]
},
{
"data": {
"text/plain": [
"0.38458414554905784"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Evaluate\n",
"print(\"\\nEvaluating Regression Performance:\")\n",
"E.evaluate_regression(model, test_loader, 'cpu')\n",
"\n",
"print(\"\\nEvaluating Domain Accuracy:\")\n",
"E.domain_accuracy(model, train_loader, 'cpu')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "57b0beb1",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python (haloflow_venv)",
"language": "python",
"name": "myenv"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
65 changes: 65 additions & 0 deletions src/haloflow/dann/data_loader.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
import numpy as np
import torch
from torch.utils.data import DataLoader, TensorDataset
from sklearn.preprocessing import StandardScaler
from .. import data as D


class SimulationDataset:
def __init__(self, sims, obs, data_dir):
self.sims = sims
self.obs = obs
self.data_dir = data_dir
self.data = self._load_data()

def _load_data(self):
data = {}
for sim in self.sims:
Y_train, X_train = D.hf2_centrals("train", self.obs, sim=sim)
Y_test, X_test = D.hf2_centrals("test", self.obs, sim=sim)
Nikhil0504 marked this conversation as resolved.
Show resolved Hide resolved
data[sim] = {
"X_train": X_train,
"Y_train": Y_train,
"X_test": X_test,
"Y_test": Y_test,
}
return data

def get_train_test_loaders(self, train_sims, test_sim, batch_size=64):
"""Get DataLoaders for training and testing."""
# Combine training data from specified simulations
X_train = np.concatenate([self.data[sim]["X_train"] for sim in train_sims])
Y_train = np.concatenate([self.data[sim]["Y_train"] for sim in train_sims])
domain_labels = np.concatenate(
[[i] * len(self.data[sim]["X_train"]) for i, sim in enumerate(train_sims)]
)

scaler = StandardScaler()

# Get test data
X_test = self.data[test_sim]["X_test"]
Y_test = self.data[test_sim]["Y_test"]
domain_labels_test = np.full(len(Y_test), len(train_sims))

# Convert to tensors
X_train_tensor = torch.tensor(
scaler.fit_transform(X_train), dtype=torch.float32
)
Y_train_tensor = torch.tensor(Y_train, dtype=torch.float32)
domain_labels_tensor = torch.tensor(domain_labels, dtype=torch.long)

X_test_tensor = torch.tensor(scaler.fit_transform(X_test), dtype=torch.float32)
Y_test_tensor = torch.tensor(Y_test, dtype=torch.float32)
domain_labels_tensor_test = torch.tensor(domain_labels_test, dtype=torch.long)

# Create datasets
train_dataset = TensorDataset(
X_train_tensor, Y_train_tensor, domain_labels_tensor
)
test_dataset = TensorDataset(X_test_tensor, Y_test_tensor)

# Create DataLoaders
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

return train_loader, test_loader
77 changes: 77 additions & 0 deletions src/haloflow/dann/evalutate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
import numpy as np
import torch
from sklearn.metrics import mean_squared_error, r2_score


def evaluate_regression(model, dataloader, device="cuda"):
"""
Evaluate the model's regression performance (MSE, RMSE, R²).

Parameters
----------
model : torch.nn.Module
Trained regression model.
dataloader : torch.utils.data.DataLoader
DataLoader for the test set.
device : str
Device to run evaluation on.

Returns
-------
dict
Dictionary containing MSE, RMSE, and R² scores.
"""
model.eval()
y_true, y_pred = [], []

with torch.no_grad():
for X_batch, y_batch in dataloader:
X_batch, y_batch = X_batch.to(device), y_batch.to(device)
preds, _ = model(X_batch)
y_true.append(y_batch.cpu().numpy())
y_pred.append(preds.cpu().numpy())

y_true = np.concatenate(y_true)
y_pred = np.concatenate(y_pred)

mse = mean_squared_error(y_true, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_true, y_pred)

print(f"MSE: {mse:.4f}, RMSE: {rmse:.4f}, R²: {r2:.4f}")
return {"mse": mse, "rmse": rmse, "r2": r2}


def domain_accuracy(model, dataloader, device="cuda"):
"""
Evaluate the domain classifier's accuracy.

Parameters
----------
model : torch.nn.Module
Trained domain classifier model.
dataloader : torch.utils.data.DataLoader
DataLoader for the test set.
device : str
Device to run evaluation on.

Returns
-------
float
Domain classification accuracy.
"""
model.eval()
correct = 0
total = 0

with torch.no_grad():
for X_batch, _, domain_batch in dataloader:
X_batch, domain_batch = X_batch.to(device), domain_batch.to(device)
_, domain_pred = model(X_batch)
preds = domain_pred.argmax(dim=1)
correct += (preds == domain_batch).sum().item()
total += domain_batch.size(0)

acc = correct / total
print(f"Domain Accuracy: {acc:.4f}")
return acc
Loading