Skip to content

Commit

Permalink
Merge pull request #16 from galactic-ai/implement-dann
Browse files Browse the repository at this point in the history
initial implementation of DANN
  • Loading branch information
changhoonhahn authored Feb 5, 2025
2 parents e9e62a4 + 8550cfb commit 2440c7e
Show file tree
Hide file tree
Showing 7 changed files with 649 additions and 0 deletions.
187 changes: 187 additions & 0 deletions bin/dann/dann_impl.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,187 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "ece31ab8",
"metadata": {},
"source": [
"# Actual Implementation"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "fa05e35a",
"metadata": {},
"outputs": [],
"source": [
"from haloflow.dann.data_loader import SimulationDataset\n",
"from haloflow.dann import model as M\n",
"from haloflow.dann import train as T\n",
"from haloflow.dann import evalutate as E\n",
"from haloflow.dann import visualise as V\n",
"\n",
"from haloflow import config as C"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "34c68ded",
"metadata": {},
"outputs": [],
"source": [
"import torch"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "b91cf1a2",
"metadata": {},
"outputs": [],
"source": [
"# Configuration\n",
"config = {\n",
" 'sims': ['TNG50', 'TNG100', 'Eagle100', 'Simba100', 'TNG_ALL'],\n",
" 'obs': 'mags',\n",
" 'dat_dir': C.get_dat_dir(),\n",
" 'input_dim': None, # Will be inferred from data\n",
" 'num_domains': 4,\n",
" 'batch_size': 128,\n",
" 'num_epochs': 100,\n",
" 'lr': 0.001,\n",
" 'alpha': 0.5,\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "5fc0cda4",
"metadata": {},
"outputs": [],
"source": [
"dataset = SimulationDataset(config['sims'], config['obs'], config['dat_dir'])\n",
"train_loader, test_loader = dataset.get_train_test_loaders(\n",
" train_sims=config['sims'][:-1], # First 4 sims for training\n",
" test_sim=config['sims'][-1], # Last sim (TNG_ALL) for testing\n",
" batch_size=config['batch_size']\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "8a1c0109",
"metadata": {},
"outputs": [],
"source": [
"# Infer input dimension from data\n",
"sample_X, _, _ = next(iter(train_loader))\n",
"config['input_dim'] = sample_X.shape[1]"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "cd0d8406",
"metadata": {},
"outputs": [],
"source": [
"# Initialize model\n",
"model = M.DANN(input_dim=config['input_dim'], \n",
" num_domains=config['num_domains'], \n",
" alpha=config['alpha']\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "484a59a2",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# Train\n",
"T.train_dann(\n",
" model, \n",
" train_loader, \n",
" test_loader, \n",
" num_epochs=config['num_epochs'], \n",
" lr=config['lr'], \n",
" device='cuda' if torch.cuda.is_available() else 'cpu'\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "3725b6a6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Evaluating Regression Performance:\n",
"MSE: 0.0955, RMSE: 0.3090, R²: 0.7535\n",
"\n",
"Evaluating Domain Accuracy:\n",
"Domain Accuracy: 0.3846\n"
]
},
{
"data": {
"text/plain": [
"0.38458414554905784"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Evaluate\n",
"print(\"\\nEvaluating Regression Performance:\")\n",
"E.evaluate_regression(model, test_loader, 'cpu')\n",
"\n",
"print(\"\\nEvaluating Domain Accuracy:\")\n",
"E.domain_accuracy(model, train_loader, 'cpu')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "57b0beb1",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python (haloflow_venv)",
"language": "python",
"name": "myenv"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
76 changes: 76 additions & 0 deletions src/haloflow/dann/data_loader.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
from re import M
import numpy as np
import torch
from torch.utils.data import DataLoader, TensorDataset
from sklearn.preprocessing import StandardScaler
from .. import data as D


class SimulationDataset:
def __init__(self, sims, obs, data_dir):
self.sims = sims
self.obs = obs
self.data_dir = data_dir
self.data = self._load_data()

def _load_data(self):
data = {}
for sim in self.sims:
Y_train, X_train = D.hf2_centrals("train", self.obs, sim=sim)
Y_test, X_test = D.hf2_centrals("test", self.obs, sim=sim)

# impose mass priors (already in log space)
# TODO: need to revisit later
mass_range_sm = [10.0, 13.]
mass_range_hm = [10.7, 15.]
mask_sm = (Y_train[:, 0] > mass_range_sm[0]) & (Y_train[:, 0] < mass_range_sm[1])
mask_hm = (Y_train[:, 1] > mass_range_hm[0]) & (Y_train[:, 1] < mass_range_hm[1])
Y_train = Y_train[mask_sm & mask_hm]
X_train = X_train[mask_sm & mask_hm]

data[sim] = {
"X_train": X_train,
"Y_train": Y_train,
"X_test": X_test,
"Y_test": Y_test,
}
return data

def get_train_test_loaders(self, train_sims, test_sim, batch_size=64):
"""Get DataLoaders for training and testing."""
# Combine training data from specified simulations
X_train = np.concatenate([self.data[sim]["X_train"] for sim in train_sims])
Y_train = np.concatenate([self.data[sim]["Y_train"] for sim in train_sims])
domain_labels = np.concatenate(
[[i] * len(self.data[sim]["X_train"]) for i, sim in enumerate(train_sims)]
)

scaler = StandardScaler()

# Get test data
X_test = self.data[test_sim]["X_test"]
Y_test = self.data[test_sim]["Y_test"]
domain_labels_test = np.full(len(Y_test), len(train_sims))

# Convert to tensors
X_train_tensor = torch.tensor(
scaler.fit_transform(X_train), dtype=torch.float32
)
Y_train_tensor = torch.tensor(Y_train, dtype=torch.float32)
domain_labels_tensor = torch.tensor(domain_labels, dtype=torch.long)

X_test_tensor = torch.tensor(scaler.fit_transform(X_test), dtype=torch.float32)
Y_test_tensor = torch.tensor(Y_test, dtype=torch.float32)
domain_labels_tensor_test = torch.tensor(domain_labels_test, dtype=torch.long)

# Create datasets
train_dataset = TensorDataset(
X_train_tensor, Y_train_tensor, domain_labels_tensor
)
test_dataset = TensorDataset(X_test_tensor, Y_test_tensor)

# Create DataLoaders
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

return train_loader, test_loader
77 changes: 77 additions & 0 deletions src/haloflow/dann/evalutate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
import numpy as np
import torch
from sklearn.metrics import mean_squared_error, r2_score


def evaluate_regression(model, dataloader, device="cuda"):
"""
Evaluate the model's regression performance (MSE, RMSE, R²).
Parameters
----------
model : torch.nn.Module
Trained regression model.
dataloader : torch.utils.data.DataLoader
DataLoader for the test set.
device : str
Device to run evaluation on.
Returns
-------
dict
Dictionary containing MSE, RMSE, and R² scores.
"""
model.eval()
y_true, y_pred = [], []

with torch.no_grad():
for X_batch, y_batch in dataloader:
X_batch, y_batch = X_batch.to(device), y_batch.to(device)
preds, _ = model(X_batch)
y_true.append(y_batch.cpu().numpy())
y_pred.append(preds.cpu().numpy())

y_true = np.concatenate(y_true)
y_pred = np.concatenate(y_pred)

mse = mean_squared_error(y_true, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_true, y_pred)

print(f"MSE: {mse:.4f}, RMSE: {rmse:.4f}, R²: {r2:.4f}")
return {"mse": mse, "rmse": rmse, "r2": r2}


def domain_accuracy(model, dataloader, device="cuda"):
"""
Evaluate the domain classifier's accuracy.
Parameters
----------
model : torch.nn.Module
Trained domain classifier model.
dataloader : torch.utils.data.DataLoader
DataLoader for the test set.
device : str
Device to run evaluation on.
Returns
-------
float
Domain classification accuracy.
"""
model.eval()
correct = 0
total = 0

with torch.no_grad():
for X_batch, _, domain_batch in dataloader:
X_batch, domain_batch = X_batch.to(device), domain_batch.to(device)
_, domain_pred = model(X_batch)
preds = domain_pred.argmax(dim=1)
correct += (preds == domain_batch).sum().item()
total += domain_batch.size(0)

acc = correct / total
print(f"Domain Accuracy: {acc:.4f}")
return acc
Loading

0 comments on commit 2440c7e

Please sign in to comment.