forked from qixuxiang/Baidu_Lane_Segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
15 changed files
with
2,108 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
place all test data and unzip them here |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
place all train data and unzip them here |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
#-*- coding:utf-8 -*- | ||
import numpy as np | ||
import cv2 | ||
import math | ||
from math import fabs,sin,cos,radians | ||
import random | ||
from random import choice | ||
''' | ||
data agumentor,incude Flip,Rotate,Scale and Translation | ||
can replace the code with Augmentor | ||
source code and docs: https://github.com/mdbloice/Augmentor | ||
''' | ||
path = "/media/airobot/docs/BaiduDatas/apolloscape/apolloscape/train/" | ||
image = "image/170927_063811892_Camera_5.jpg" | ||
label = "label/170927_063811892_Camera_5_bin.png" | ||
flipCode = [1,1] | ||
|
||
class DataAugmentor: | ||
def __init__(self): | ||
pass | ||
def random_flip(self, img, code): | ||
return cv2.flip(img, code) | ||
|
||
def random_rotation(self, img, degree): | ||
height,width = img.shape[:2] | ||
heightNew = int(width*fabs(sin(radians(degree)))+height*fabs(cos(radians(degree)))) | ||
widthNew = int(height*fabs(sin(radians(degree)))+width*fabs(cos(radians(degree)))) | ||
matRotation = cv2.getRotationMatrix2D((width/2,height/2),degree,1) | ||
matRotation[0,2] +=(widthNew-width)/2 | ||
matRotation[1,2] +=(heightNew-height)/2 | ||
imgRotation = cv2.warpAffine(img,matRotation,(widthNew,heightNew)) | ||
return imgRotation | ||
|
||
def rotate(self,image, angle, center=None, scale=1.0): | ||
(h, w) = image.shape[:2] | ||
if center is None: | ||
center = (w / 2, h / 2) | ||
M = cv2.getRotationMatrix2D(center, angle, scale) | ||
rotated = cv2.warpAffine(image, M, (w, h),flags=cv2.INTER_NEAREST) | ||
return rotated | ||
|
||
def tfactor(self,img): | ||
hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV);#增加饱和度光照的噪声 | ||
hsv[:,:,0] = hsv[:,:,0]*(0.8+ np.random.random()*0.2) | ||
hsv[:,:,1] = hsv[:,:,1]*(0.6+ np.random.random()*0.4) | ||
hsv[:,:,2] = hsv[:,:,2]*(0.4+ np.random.random()*0.6) | ||
img = cv2.cvtColor(hsv,cv2.COLOR_HSV2BGR) | ||
return img | ||
|
||
def disturb(self, image, label): | ||
flip_code = choice(flipCode) | ||
rotate_degree = random.uniform(160,200) | ||
scale = random.uniform(1.0,2.0) | ||
image = self.random_flip(image, flip_code) | ||
label = self.random_flip(label, flip_code) | ||
#image = self.rotate(image, rotate_degree,scale=scale) | ||
#label = self.rotate(label, rotate_degree,scale=scale) | ||
#image = self.tfactor(image) | ||
return image, label | ||
|
||
if __name__ == '__main__': | ||
img = cv2.imread(path+image) | ||
img_label = cv2.imread(path+label) | ||
img = cv2.resize(img, (1024, 512), interpolation=cv2.INTER_CUBIC) | ||
img_label = cv2.resize(img_label, (1024, 512), interpolation=cv2.INTER_NEAREST) | ||
|
||
cv2.imshow("origin image",img) | ||
cv2.imshow("origin label image", img_label) | ||
augmentor = DataAugmentor() | ||
image,label = augmentor.disturb(img, img_label) | ||
|
||
cv2.imshow("image",image) | ||
cv2.imshow("label image", label) | ||
|
||
#cv2.imwrite("/home/airobot/1.jpg", image) | ||
#cv2.imwrite("/home/airobot/2.png", label) | ||
cv2.waitKey(0) | ||
cv2.destroyAllWindows() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
#-*- coding:utf-8 -*- | ||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
import paddle | ||
import paddle.fluid as fluid | ||
from utils import * | ||
import utils | ||
import contextlib | ||
import os | ||
import math | ||
os.environ["CUDA_VISIBLE_DEVICES"] = "0" | ||
|
||
class pannet(object): | ||
def __init__(self, rows=512, cols=512): | ||
self.rows = rows | ||
self.cols = cols | ||
def Inception_dilation(self, inputs, channels): | ||
conv3 = conv_bn_layer(input=inputs, num_filters=channels, | ||
filter_size=3, stride=1, dilation=1, act='relu') | ||
print("conv3.shape----------",conv3.shape) | ||
|
||
conv5 = conv_bn_layer(input=inputs, num_filters=channels, | ||
filter_size=3, stride=1, dilation=2, act='relu') | ||
print("conv5.shape----------",conv5.shape) | ||
conv7 = conv_bn_layer(input=inputs, num_filters=channels, | ||
filter_size=3, stride=1, dilation=4, act='relu') | ||
print("conv7.shape----------",conv7.shape) | ||
conv9 = conv_bn_layer(input=inputs, num_filters=channels, | ||
filter_size=3, stride=1, dilation=6, act='relu') | ||
print("conv9.shape----------",conv9.shape) | ||
|
||
merge2 = fluid.layers.concat([conv3, conv5, conv7, conv9], axis = 1) | ||
return merge2 | ||
|
||
def FeaturePyramidAttention(self, inputs, channels): | ||
conv1 = conv_bn_layer(input=inputs, num_filters=channels, | ||
filter_size=1, stride=1,dilation=1, act='relu') | ||
|
||
conv7 = conv_bn_layer(input=inputs, num_filters=channels, | ||
filter_size=3, stride=1, dilation=4, act='relu') | ||
print("before pooling,",conv7.shape) | ||
|
||
pool1 = fluid.layers.pool2d(conv7, pool_size=4, pool_type='max', | ||
pool_stride=4) | ||
print("after pooling,",pool1.shape) | ||
conv5 = conv_bn_layer(input=pool1, num_filters=channels, | ||
filter_size=3, stride=1, dilation=3, act='relu') | ||
pool2 = fluid.layers.pool2d(conv5, pool_size=4, pool_type='max', | ||
pool_stride=4) | ||
|
||
conv3 = conv_bn_layer(input=pool2, num_filters=channels, | ||
filter_size=3, stride=1, dilation=2, act='relu') | ||
pool3 = fluid.layers.pool2d(conv3, pool_size=4, pool_type='max', | ||
pool_stride=4) | ||
conv2 = conv_bn_layer(input=pool3, num_filters=channels, | ||
filter_size=3, stride=1, dilation=1, act='relu') | ||
|
||
up1 = fluid.layers.resize_bilinear(input = conv2,scale = 4) | ||
up1 = conv_bn_layer(input=up1, num_filters=channels,filter_size=1, | ||
stride=1,dilation=1, act='relu') | ||
up1 = fluid.layers.concat([up1, conv3], axis = 1) | ||
|
||
up2 = fluid.layers.resize_bilinear(input = up1,scale = 4) | ||
up2 = conv_bn_layer(input=up2, num_filters=channels,filter_size=1, | ||
stride=1,dilation=1, act='relu') | ||
up2 = fluid.layers.concat([up2, conv5], axis = 1) | ||
|
||
up3 = fluid.layers.resize_bilinear(input = up2,scale = 4) | ||
up3 = conv_bn_layer(input=up3, num_filters=channels,filter_size=1, | ||
stride=1,dilation=1, act='relu') | ||
up3 = fluid.layers.concat([up3, conv7], axis = 1) | ||
out = fluid.layers.concat([up3, conv1], axis = 1) | ||
return out | ||
|
||
def GlobalAttentionUpsample(self, inputs_low, inputs_high, channels): | ||
#inputs_low:低层次信息输入 | ||
#inputs_high:高层次信息输入 | ||
print('inputs_high.shape---------',inputs_high.shape) | ||
conv3 = conv_bn_layer(input=inputs_low, num_filters=3*channels, | ||
filter_size=3, stride=1,dilation=1, act='relu') | ||
gap = fluid.layers.pool2d(inputs_high,pool_type='avg',global_pooling=True) | ||
|
||
print('gap.shape------------', gap.shape) | ||
h = conv3.shape[2] | ||
w = conv3.shape[3] | ||
gap = fluid.layers.resize_bilinear(input = gap,out_shape = [h,w] ) | ||
|
||
conv1conv3 = fluid.layers.elementwise_mul(gap, conv3) | ||
''' | ||
conv1 = conv_bn_layer(input=gap, num_filters=3*channels, | ||
filter_size=1, stride=1,dilation=1, act='relu') | ||
print("conv1.shape---------",conv1.shape) | ||
''' | ||
#out = fluid.layers.sequence_concat(input=[conv1conv3, inputs_high]) | ||
out = fluid.layers.concat([conv1conv3, inputs_high], axis = 1) | ||
|
||
return out | ||
|
||
def model(self, inputs): | ||
|
||
conv1 = self.Inception_dilation(inputs, 4) | ||
res1 = fluid.layers.concat([inputs, conv1], axis = 1) | ||
conv2 = self.Inception_dilation(res1, 4) | ||
conv2 = self.Inception_dilation(conv2, 4) | ||
res2 = fluid.layers.concat([res1, conv2], axis = 1) | ||
conv3 = self.Inception_dilation(res2, 4) | ||
conv3 = self.Inception_dilation(conv3, 4) | ||
res3 = fluid.layers.concat([res2, conv3], axis = 1) | ||
conv4 = self.Inception_dilation(res3, 4) | ||
conv4 = self.Inception_dilation(conv4, 4) | ||
|
||
FPA = self.FeaturePyramidAttention(conv4, 4) | ||
print('FPA.shape', FPA.shape) | ||
print('conv3.shape', conv3.shape) | ||
GAU1 = self.GlobalAttentionUpsample(conv3, FPA, 4) | ||
GF1 = fluid.layers.concat([FPA, GAU1], axis = 1) | ||
|
||
GAU2 = self.GlobalAttentionUpsample(conv2, GF1, 12) | ||
GF2 = fluid.layers.concat([GF1, GAU2], axis = 1) | ||
|
||
GAU3 = self.GlobalAttentionUpsample(conv1, GF2, 36) | ||
GF3 = fluid.layers.concat([GF2, GAU3], axis = 1) | ||
|
||
conv8 = conv_bn_layer(input=GF3, num_filters=12,filter_size=1, | ||
stride=1,dilation=1, act='relu') | ||
print("conv8 shape:", conv8.shape) | ||
|
||
conv9 = conv_bn_layer(input=conv8, num_filters=9,filter_size=1, | ||
stride=1,dilation=1, act='relu') | ||
|
||
conv9 = fluid.layers.transpose(x=conv9, perm=[0, 2, 3, 1]) | ||
conv9 = fluid.layers.reshape(conv9, shape=[-1, 9]) | ||
modelOut = fluid.layers.softmax(conv9) | ||
print('modelOut.shape == ',modelOut.shape) | ||
|
||
return modelOut |
Oops, something went wrong.