Amundsen Metadata service serves Restful API and responsible for providing and also updating metadata, such as table & column description, and tags. Metadata service can use Neo4j or Apache Atlas as a persistent layer.
- Python >= 3.7
$ venv_path=[path_for_virtual_environment]
$ python3 -m venv $venv_path
$ source $venv_path/bin/activate
$ pip3 install amundsen-metadata
$ python3 metadata_service/metadata_wsgi.py
-- In different terminal, verify getting HTTP/1.0 200 OK
$ curl -v http://localhost:5000/healthcheck
$ git clone https://github.com/lyft/amundsenmetadatalibrary.git
$ cd amundsenmetadatalibrary
$ python3 -m venv venv
$ source venv/bin/activate
$ pip3 install -r requirements.txt
$ python3 setup.py install
$ python3 metadata_service/metadata_wsgi.py
-- In different terminal, verify getting HTTP/1.0 200 OK
$ curl -v http://localhost:5000/healthcheck
$ docker pull amundsendev/amundsen-metadata:latest
$ docker run -p 5000:5000 amundsendev/amundsen-metadata
-- In different terminal, verify getting HTTP/1.0 200 OK
$ curl -v http://localhost:5000/healthcheck
By default, Flask comes with Werkzeug webserver, which is for development. For production environment use production grade web server such as Gunicorn.
$ pip install gunicorn
$ gunicorn metadata_service.metadata_wsgi
Here is documentation of gunicorn configuration.
By default, Metadata service uses LocalConfig that looks for Neo4j running in localhost.
In order to use different end point, you need to create Config suitable for your use case. Once config class has been created, it can be referenced by environment variable: METADATA_SVC_CONFIG_MODULE_CLASS
For example, in order to have different config for production, you can inherit Config class, create Production config and passing production config class into environment variable. Let's say class name is ProdConfig and it's in metadata_service.config module. then you can set as below:
METADATA_SVC_CONFIG_MODULE_CLASS=metadata_service.config.ProdConfig
This way Metadata service will use production config in production environment. For more information on how the configuration is being loaded and used, here's reference from Flask doc.
Amundsen Metadata service can use Apache Atlas as a backend. Some of the benefits of using Apache Atlas instead of Neo4j is that Apache Atlas offers plugins to several services (e.g. Apache Hive, Apache Spark) that allow for push based updates. It also allows to set policies on what metadata is accesible and editable by means of Apache Ranger.
If you would like to use Apache Atlas as a backend for Metadata service you will need to create a Config as mentioned above. Make sure to include the following:
PROXY_CLIENT = PROXY_CLIENTS['ATLAS'] # or env PROXY_CLIENT='ATLAS'
PROXY_PORT = 21000 # or env PROXY_PORT
PROXY_USER = 'atlasuser' # or env CREDENTIALS_PROXY_USER
PROXY_PASSWORD = 'password' # or env CREDENTIALS_PROXY_PASSWORD
To start the service with Atlas from Docker. Make sure you have atlasserver
configured in DNS (or docker-compose)
$ docker run -p 5000:5000 --env PROXY_CLIENT=ATLAS --env PROXY_PORT=21000 --env PROXY_HOST=atlasserver --env CREDENTIALS_PROXY_USER=atlasuser --env CREDENTIALS_PROXY_PASSWORD=password amundsen-metadata:latest
NOTE
The support for Apache Atlas is work in progress. For example, while Apache Atlas supports fine grained access, Amundsen does not support this yet.
- PEP 8: Amundsen Metadata service follows PEP8 - Style Guide for Python Code.
- Typing hints: Amundsen Metadata service also utilizes Typing hint for better readability.
Please visit Code Structure to read how different modules are structured in Amundsen Metadata service.