Skip to content

Commit

Permalink
Added results from example 002
Browse files Browse the repository at this point in the history
  • Loading branch information
gusqgm committed Mar 18, 2022
1 parent 2150537 commit c82c146
Show file tree
Hide file tree
Showing 65 changed files with 2,290 additions and 3 deletions.
4 changes: 2 additions & 2 deletions config_params.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,9 +23,9 @@ The configuration file is subdivided into main sections
### **4) Cell segmentation**
Performs cell and lumen (+ epithelium) segmentation model training and prediction tasks on image data, based on predicted nuclei segmentation.
### **5) Features**
Extracts features based on the segmented label maps
Extracts features based on the segmented label maps. Its output is an .h5 file containing the feature table.
### **6) Meshes**
Creates .vtk meshes based on the cell and nuclei segmentation label maps
Creates .vti meshes based on the cell and nuclei segmentation label maps
### **7) Tracking**
Performs tracking model training and prediction tasks on image data based on existing nuclei segmentation.

Expand Down
2 changes: 1 addition & 1 deletion example/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ Raw images are first denoised with [Noise2Void](https://github.com/juglab/n2v) t
```bash
LUIGI_CONFIG_PATH=./config.cfg luigi --local-scheduler --module lstree MultiDeconvolutionTask
```
> **-Deconv folder requirement**: The outputs from this step include a folder with '-Deconv' as a suffix, and the other steps use the images inside as input for segmentation. If this is not needed, a - so far still hacky - way around it is to copy the raw images to an empty folder with the same name before running the config file.
> **'-Deconv' folder requirement**: The outputs from this step include a folder with '-Deconv' as a suffix, and the other steps use the images inside as input for segmentation. If this is not needed, i.e. if only raw data is desired to be processed, a - so far still hacky - way around it is to copy the raw images to an empty folder with the same name before running the config file.
> **PSF estimation**: As expected during deconvolution, a point-spread-function (PSF) of the optics used for imaging is necessary. You can uye [Huygens PSF Distiller](https://svi.nl/Huygens-PSF-Distiller) or the [PSF extraction from python-microscopy](http://python-microscopy.org/doc/PSFExtraction.html).
Expand Down
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
5 changes: 5 additions & 0 deletions example/data/002-Budding/Channel0_bounds.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
{
"max": 933,
"max_q0.99999": 719,
"min": 57
}
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
5 changes: 5 additions & 0 deletions example/data/002-Budding/Channel1_bounds.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
{
"max": 938,
"max_q0.99999": 782,
"min": 73
}
Binary file added example/data/002-Budding/agg_features.h5
Binary file not shown.
34 changes: 34 additions & 0 deletions example/data/002-Budding/cell_mesh/002-Ch0-T0301.vtp

Large diffs are not rendered by default.

34 changes: 34 additions & 0 deletions example/data/002-Budding/cell_mesh/002-Ch0-T0302.vtp

Large diffs are not rendered by default.

34 changes: 34 additions & 0 deletions example/data/002-Budding/cell_mesh/002-Ch0-T0303.vtp

Large diffs are not rendered by default.

34 changes: 34 additions & 0 deletions example/data/002-Budding/cell_mesh/002-Ch0-T0304.vtp

Large diffs are not rendered by default.

34 changes: 34 additions & 0 deletions example/data/002-Budding/cell_mesh/002-Ch0-T0305.vtp

Large diffs are not rendered by default.

Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
319 changes: 319 additions & 0 deletions example/data/002-Budding/features/T0301.csv
Original file line number Diff line number Diff line change
@@ -0,0 +1,319 @@
channel,region,object_id,feature_name,feature_value
na,cell,1,neighbors,"[5, 7, 11, 2, 3]"
na,cell,2,neighbors,"[1, 11, 5, 12, 3, 13, 4]"
na,cell,3,neighbors,"[1, 7, 2, 9, 4, 13, 19, 8]"
na,cell,4,neighbors,"[2, 3, 13, 7, 19, 8]"
na,cell,5,neighbors,"[10, 16, 1, 11, 7, 6, 2]"
na,cell,6,neighbors,"[10, 17, 5, 7, 18, 9, 16]"
na,cell,7,neighbors,"[5, 10, 6, 1, 9, 3, 8, 4]"
na,cell,8,neighbors,"[3, 7, 9, 4, 19, 18]"
na,cell,9,neighbors,"[7, 6, 18, 10, 17, 3, 8, 19, 20]"
na,cell,10,neighbors,"[5, 16, 17, 6, 7, 18, 9]"
na,cell,11,neighbors,"[5, 16, 1, 2, 12, 15]"
na,cell,12,neighbors,"[11, 16, 2, 15, 13, 19]"
na,cell,13,neighbors,"[2, 12, 15, 3, 4, 19]"
na,cell,15,neighbors,"[16, 17, 12, 11, 20, 13, 19]"
na,cell,16,neighbors,"[5, 10, 17, 11, 12, 15, 6, 20]"
na,cell,17,neighbors,"[16, 10, 6, 18, 9, 15, 20]"
na,cell,18,neighbors,"[6, 17, 10, 9, 20, 19, 8]"
na,cell,19,neighbors,"[3, 13, 12, 15, 20, 9, 18, 4, 8]"
na,cell,20,neighbors,"[16, 17, 15, 18, 19, 9]"
nuclei_intensity,nuclei,1,q0_000,0.0
nuclei_intensity,nuclei,1,q0_250,17105.0
nuclei_intensity,nuclei,1,q0_500,23081.0
nuclei_intensity,nuclei,1,q0_750,29384.0
nuclei_intensity,nuclei,1,q1_000,64455.0
nuclei_intensity,nuclei,2,q0_000,4226.0
nuclei_intensity,nuclei,2,q0_250,16627.0
nuclei_intensity,nuclei,2,q0_500,20996.0
nuclei_intensity,nuclei,2,q0_750,25617.0
nuclei_intensity,nuclei,2,q1_000,53867.0
nuclei_intensity,nuclei,3,q0_000,1631.0
nuclei_intensity,nuclei,3,q0_250,14509.0
nuclei_intensity,nuclei,3,q0_500,21804.5
nuclei_intensity,nuclei,3,q0_750,30203.75
nuclei_intensity,nuclei,3,q1_000,65535.0
nuclei_intensity,nuclei,4,q0_000,3499.0
nuclei_intensity,nuclei,4,q0_250,17915.0
nuclei_intensity,nuclei,4,q0_500,25254.0
nuclei_intensity,nuclei,4,q0_750,31815.0
nuclei_intensity,nuclei,4,q1_000,65535.0
nuclei_intensity,nuclei,5,q0_000,1928.0
nuclei_intensity,nuclei,5,q0_250,17599.5
nuclei_intensity,nuclei,5,q0_500,24489.5
nuclei_intensity,nuclei,5,q0_750,33371.75
nuclei_intensity,nuclei,5,q1_000,65535.0
nuclei_intensity,nuclei,6,q0_000,0.0
nuclei_intensity,nuclei,6,q0_250,17658.0
nuclei_intensity,nuclei,6,q0_500,25523.0
nuclei_intensity,nuclei,6,q0_750,34627.0
nuclei_intensity,nuclei,6,q1_000,65535.0
nuclei_intensity,nuclei,7,q0_000,0.0
nuclei_intensity,nuclei,7,q0_250,16216.5
nuclei_intensity,nuclei,7,q0_500,24879.0
nuclei_intensity,nuclei,7,q0_750,32663.0
nuclei_intensity,nuclei,7,q1_000,65535.0
nuclei_intensity,nuclei,8,q0_000,0.0
nuclei_intensity,nuclei,8,q0_250,17997.0
nuclei_intensity,nuclei,8,q0_500,25883.0
nuclei_intensity,nuclei,8,q0_750,35171.0
nuclei_intensity,nuclei,8,q1_000,65535.0
nuclei_intensity,nuclei,9,q0_000,0.0
nuclei_intensity,nuclei,9,q0_250,16714.0
nuclei_intensity,nuclei,9,q0_500,25591.0
nuclei_intensity,nuclei,9,q0_750,35850.0
nuclei_intensity,nuclei,9,q1_000,65535.0
nuclei_intensity,nuclei,10,q0_000,0.0
nuclei_intensity,nuclei,10,q0_250,18379.0
nuclei_intensity,nuclei,10,q0_500,25760.0
nuclei_intensity,nuclei,10,q0_750,34035.0
nuclei_intensity,nuclei,10,q1_000,65535.0
nuclei_intensity,nuclei,11,q0_000,2422.0
nuclei_intensity,nuclei,11,q0_250,18892.0
nuclei_intensity,nuclei,11,q0_500,31779.0
nuclei_intensity,nuclei,11,q0_750,44657.25
nuclei_intensity,nuclei,11,q1_000,65535.0
nuclei_intensity,nuclei,12,q0_000,0.0
nuclei_intensity,nuclei,12,q0_250,15596.0
nuclei_intensity,nuclei,12,q0_500,22001.5
nuclei_intensity,nuclei,12,q0_750,29663.25
nuclei_intensity,nuclei,12,q1_000,65535.0
nuclei_intensity,nuclei,13,q0_000,3634.0
nuclei_intensity,nuclei,13,q0_250,19696.0
nuclei_intensity,nuclei,13,q0_500,25835.0
nuclei_intensity,nuclei,13,q0_750,31777.0
nuclei_intensity,nuclei,13,q1_000,64724.0
nuclei_intensity,nuclei,14,q0_000,0.0
nuclei_intensity,nuclei,14,q0_250,16963.75
nuclei_intensity,nuclei,14,q0_500,24689.5
nuclei_intensity,nuclei,14,q0_750,32173.0
nuclei_intensity,nuclei,14,q1_000,65535.0
nuclei_intensity,nuclei,15,q0_000,0.0
nuclei_intensity,nuclei,15,q0_250,17029.25
nuclei_intensity,nuclei,15,q0_500,23596.5
nuclei_intensity,nuclei,15,q0_750,30649.75
nuclei_intensity,nuclei,15,q1_000,62391.0
nuclei_intensity,nuclei,16,q0_000,0.0
nuclei_intensity,nuclei,16,q0_250,15707.75
nuclei_intensity,nuclei,16,q0_500,23036.5
nuclei_intensity,nuclei,16,q0_750,30635.25
nuclei_intensity,nuclei,16,q1_000,65535.0
nuclei_intensity,nuclei,17,q0_000,0.0
nuclei_intensity,nuclei,17,q0_250,18543.0
nuclei_intensity,nuclei,17,q0_500,25064.0
nuclei_intensity,nuclei,17,q0_750,31666.0
nuclei_intensity,nuclei,17,q1_000,65535.0
nuclei_intensity,nuclei,18,q0_000,0.0
nuclei_intensity,nuclei,18,q0_250,16842.0
nuclei_intensity,nuclei,18,q0_500,25664.0
nuclei_intensity,nuclei,18,q0_750,34425.0
nuclei_intensity,nuclei,18,q1_000,65535.0
nuclei_intensity,nuclei,19,q0_000,0.0
nuclei_intensity,nuclei,19,q0_250,12380.0
nuclei_intensity,nuclei,19,q0_500,22910.0
nuclei_intensity,nuclei,19,q0_750,35090.5
nuclei_intensity,nuclei,19,q1_000,65535.0
nuclei_intensity,nuclei,20,q0_000,0.0
nuclei_intensity,nuclei,20,q0_250,17251.5
nuclei_intensity,nuclei,20,q0_500,24602.0
nuclei_intensity,nuclei,20,q0_750,35596.5
nuclei_intensity,nuclei,20,q1_000,65535.0
nuclei_intensity,nuclei,1,mean,24155.641226353557
nuclei_intensity,nuclei,1,std,10261.447503164069
nuclei_intensity,nuclei,2,mean,21462.622355289423
nuclei_intensity,nuclei,2,std,6906.337405917156
nuclei_intensity,nuclei,3,mean,23059.214981729598
nuclei_intensity,nuclei,3,std,10908.584880862922
nuclei_intensity,nuclei,4,mean,25295.961663417806
nuclei_intensity,nuclei,4,std,10585.010517892622
nuclei_intensity,nuclei,5,mean,25833.878896103895
nuclei_intensity,nuclei,5,std,11167.809968337806
nuclei_intensity,nuclei,6,mean,26935.036182158452
nuclei_intensity,nuclei,6,std,13571.894635971788
nuclei_intensity,nuclei,7,mean,25120.17826887661
nuclei_intensity,nuclei,7,std,12888.703609788077
nuclei_intensity,nuclei,8,mean,27411.051425377307
nuclei_intensity,nuclei,8,std,13084.847644550142
nuclei_intensity,nuclei,9,mean,26810.383529411763
nuclei_intensity,nuclei,9,std,13135.19337372595
nuclei_intensity,nuclei,10,mean,26602.83162638263
nuclei_intensity,nuclei,10,std,11242.21905506999
nuclei_intensity,nuclei,11,mean,32358.618834080717
nuclei_intensity,nuclei,11,std,16149.412383475246
nuclei_intensity,nuclei,12,mean,23455.70042194093
nuclei_intensity,nuclei,12,std,10863.875687065287
nuclei_intensity,nuclei,13,mean,26289.63272513243
nuclei_intensity,nuclei,13,std,9588.166511654927
nuclei_intensity,nuclei,14,mean,24923.145526960783
nuclei_intensity,nuclei,14,std,10871.111522190487
nuclei_intensity,nuclei,15,mean,24391.816752011706
nuclei_intensity,nuclei,15,std,10220.893098871004
nuclei_intensity,nuclei,16,mean,23655.50868983957
nuclei_intensity,nuclei,16,std,11236.180268400318
nuclei_intensity,nuclei,17,mean,26057.73537388609
nuclei_intensity,nuclei,17,std,10447.03934550366
nuclei_intensity,nuclei,18,mean,26549.852911813643
nuclei_intensity,nuclei,18,std,13405.168558415437
nuclei_intensity,nuclei,19,mean,24035.919868791003
nuclei_intensity,nuclei,19,std,14856.074853730783
nuclei_intensity,nuclei,20,mean,26809.311667723527
nuclei_intensity,nuclei,20,std,13680.06058561408
dist_to_lumen,nuclei,1,mean,7.910897254943848
dist_to_lumen,nuclei,2,mean,9.244121551513672
dist_to_lumen,nuclei,3,mean,7.493631362915039
dist_to_lumen,nuclei,4,mean,8.698860168457031
dist_to_lumen,nuclei,5,mean,7.404200553894043
dist_to_lumen,nuclei,6,mean,9.198090553283691
dist_to_lumen,nuclei,7,mean,7.467806816101074
dist_to_lumen,nuclei,8,mean,7.495289325714111
dist_to_lumen,nuclei,9,mean,7.984447002410889
dist_to_lumen,nuclei,10,mean,10.548694610595703
dist_to_lumen,nuclei,11,mean,7.187387466430664
dist_to_lumen,nuclei,12,mean,8.405850410461426
dist_to_lumen,nuclei,13,mean,9.585248947143555
dist_to_lumen,nuclei,14,mean,8.65551471710205
dist_to_lumen,nuclei,15,mean,9.393585205078125
dist_to_lumen,nuclei,16,mean,7.2069621086120605
dist_to_lumen,nuclei,17,mean,9.467308044433594
dist_to_lumen,nuclei,18,mean,9.529365539550781
dist_to_lumen,nuclei,19,mean,7.544955730438232
dist_to_lumen,nuclei,20,mean,8.24293327331543
dist_to_basal,nuclei,1,mean,3.480356216430664
dist_to_basal,nuclei,2,mean,3.0895817279815674
dist_to_basal,nuclei,3,mean,4.145165920257568
dist_to_basal,nuclei,4,mean,4.603912830352783
dist_to_basal,nuclei,5,mean,4.8052263259887695
dist_to_basal,nuclei,6,mean,4.001973628997803
dist_to_basal,nuclei,7,mean,3.4609389305114746
dist_to_basal,nuclei,8,mean,4.6254706382751465
dist_to_basal,nuclei,9,mean,4.146569728851318
dist_to_basal,nuclei,10,mean,4.442856788635254
dist_to_basal,nuclei,11,mean,3.66614031791687
dist_to_basal,nuclei,12,mean,3.187755823135376
dist_to_basal,nuclei,13,mean,3.9625508785247803
dist_to_basal,nuclei,14,mean,5.978910446166992
dist_to_basal,nuclei,15,mean,3.7076592445373535
dist_to_basal,nuclei,16,mean,5.013998508453369
dist_to_basal,nuclei,17,mean,4.201594352722168
dist_to_basal,nuclei,18,mean,4.226149559020996
dist_to_basal,nuclei,19,mean,6.444519519805908
dist_to_basal,nuclei,20,mean,5.720365047454834
na,nuclei,1,volume,207.26160000000002
na,nuclei,2,volume,338.67600000000004
na,nuclei,3,volume,221.99840000000003
na,nuclei,4,volume,208.07280000000003
na,nuclei,5,volume,416.41600000000005
na,nuclei,6,volume,216.72560000000001
na,nuclei,7,volume,367.06800000000004
na,nuclei,8,volume,241.8728
na,nuclei,9,volume,402.22
na,nuclei,10,volume,330.02320000000003
na,nuclei,11,volume,180.8976
na,nuclei,12,volume,192.25440000000003
na,nuclei,13,volume,229.70480000000003
na,nuclei,14,volume,441.29280000000006
na,nuclei,15,volume,369.63680000000005
na,nuclei,16,volume,404.51840000000004
na,nuclei,17,volume,348.95120000000003
na,nuclei,18,volume,406.27600000000007
na,nuclei,19,volume,577.0336000000001
na,nuclei,20,volume,426.42080000000004
na,cell,1,volume,860.4128000000001
na,cell,2,volume,1081.7352
na,cell,3,volume,878.3944000000001
na,cell,4,volume,858.9256000000001
na,cell,5,volume,1505.8576000000003
na,cell,6,volume,925.0384000000001
na,cell,7,volume,1141.0880000000002
na,cell,8,volume,1065.1056
na,cell,9,volume,1475.4376000000002
na,cell,10,volume,1127.9736
na,cell,11,volume,618.2696000000001
na,cell,12,volume,665.5896
na,cell,13,volume,872.4456000000001
na,cell,15,volume,1238.0264000000002
na,cell,16,volume,1304.5448000000001
na,cell,17,volume,1159.8808000000001
na,cell,18,volume,1528.1656000000003
na,cell,19,volume,3338.4936000000002
na,cell,20,volume,1887.9328000000003
na,epithelium,1,volume,23772.892000000003
na,lumen,1,volume,725.8888000000001
na,nuclei,1,mean_radius,1.040822370172954
na,nuclei,1,max_radius,2.74138651050887
na,nuclei,2,mean_radius,1.187469782321267
na,nuclei,2,max_radius,3.2160223879817753
na,nuclei,3,mean_radius,1.0574754089925644
na,nuclei,3,max_radius,2.9068883707497273
na,nuclei,4,mean_radius,1.0295103812222757
na,nuclei,4,max_radius,2.800285699709942
na,nuclei,5,mean_radius,1.3096581933403355
na,nuclei,5,max_radius,3.341496670655232
na,nuclei,6,mean_radius,0.9559999845459228
na,nuclei,6,max_radius,2.5892083732291615
na,nuclei,7,mean_radius,1.194604897832432
na,nuclei,7,max_radius,3.2802438933713454
na,nuclei,8,mean_radius,1.0664741557549755
na,nuclei,8,max_radius,2.763837911311009
na,nuclei,9,mean_radius,1.245703568840987
na,nuclei,9,max_radius,3.38
na,nuclei,10,mean_radius,1.2241773786484789
na,nuclei,10,max_radius,3.52845575287547
na,nuclei,11,mean_radius,0.9762097529989893
na,nuclei,11,max_radius,2.5096613317338257
na,nuclei,12,mean_radius,1.0827045883055373
na,nuclei,12,max_radius,2.74138651050887
na,nuclei,13,mean_radius,1.1082666246758055
na,nuclei,13,max_radius,3.1218584208768982
na,nuclei,14,mean_radius,1.290225550351955
na,nuclei,14,max_radius,3.38
na,nuclei,15,mean_radius,1.1941759881335259
na,nuclei,15,max_radius,3.38
na,nuclei,16,mean_radius,1.1888384191246884
na,nuclei,16,max_radius,3.57603131977336
na,nuclei,17,mean_radius,1.103528857370757
na,nuclei,17,max_radius,3.0782462539569506
na,nuclei,18,mean_radius,1.2381844969699622
na,nuclei,18,max_radius,3.649273900380732
na,nuclei,19,mean_radius,1.3149284491534368
na,nuclei,19,max_radius,3.751319767761741
na,nuclei,20,mean_radius,1.2769023344116812
na,nuclei,20,max_radius,3.9
na,cell,1,mean_radius,1.8517886090271725
na,cell,1,max_radius,5.631696014523511
na,cell,2,mean_radius,1.7294986810799267
na,cell,2,max_radius,5.175055555257354
na,cell,3,mean_radius,1.7187211653842165
na,cell,3,max_radius,5.3231569580466065
na,cell,4,mean_radius,1.6208076324110823
na,cell,4,max_radius,5.206495942570204
na,cell,5,mean_radius,1.9030833563834189
na,cell,5,max_radius,6.161201181587889
na,cell,6,mean_radius,1.6842255535695698
na,cell,6,max_radius,5.175055555257354
na,cell,7,mean_radius,1.7268985564907948
na,cell,7,max_radius,5.430027624239126
na,cell,8,mean_radius,1.6923789522054642
na,cell,8,max_radius,4.9787548644214255
na,cell,9,mean_radius,1.8071572535435687
na,cell,9,max_radius,5.883128419472076
na,cell,10,mean_radius,1.9040095195201112
na,cell,10,max_radius,5.875576567452764
na,cell,11,mean_radius,1.6052456930889798
na,cell,11,max_radius,4.913735849636201
na,cell,12,mean_radius,1.6275550782769825
na,cell,12,max_radius,4.7670955518009075
na,cell,13,mean_radius,1.7356680424150555
na,cell,13,max_radius,5.38
na,cell,15,mean_radius,2.0102697436644954
na,cell,15,max_radius,6.248359784775522
na,cell,16,mean_radius,1.8236506001913022
na,cell,16,max_radius,5.983878341009282
na,cell,17,mean_radius,1.8899023910049975
na,cell,17,max_radius,6.0
na,cell,18,mean_radius,1.943915276188552
na,cell,18,max_radius,6.5
na,cell,19,mean_radius,2.3934231908532384
na,cell,19,max_radius,6.762721345730578
na,cell,20,mean_radius,2.3056732210542643
na,cell,20,max_radius,7.152062639546721
Loading

0 comments on commit c82c146

Please sign in to comment.